
David Binder, August 2024

Persistent Data Structures
From Lists to Hashmaps

Slides @ binderdavid.github.io/talks

1

http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks
http://binderdavid.github.io/talks

Who uses Git?

2

Git is a Persistent Data Structure

• You can add, delete and change files.

• You can undo all these operations.

• You can take a previous version in your history and branch from that.

• The implementation is not immutable! (Cf. pack files, delta compression)

If you think Git is useful, then persistent data

structures are for you :)

3

Beginner Technique:
Structural Sharing

4

It's all about sharing...
...memory.

5

Structural Sharing by Example
Singly-Linked Lists

list_a = [3,2,1]

list_b = [4] ++ list_a

list_c = [5] ++ list_a

list_d = [6] ++ list_c

= [3,2,1]
= [4,3,2,1]
= [5,3,2,1]
= [6,5,3,2,1]

We don't want to do defensive copying!
6

Structural Sharing by Example
Singly-Linked Lists

(c) Jeff Schwab, https://nested.substack.com/p/intro-to-persistent-data-structures
7

https://nested.substack.com/p/intro-to-persistent-data-structures

Structural Sharing in Practice

• Data structures have to be designed with sharing in mind.

• Algorithms have to be written with sharing in mind.

• Challenge: Write a filter function which shares the tail!

• Okasaki's "Purely Functional Data Structures" contains many examples.
Recommended!

8

Hashmaps

9

What are hashmaps / dictionaries?

{

 id: 14823777

 name_first: "David",

 name_last: "Binder",

 favourite_movie_of_all_time_and_space: "La Nuit de Varennes"

}

Supports insertion of key-value pairs.

Supports key lookup.

Supports deletion of key.

Supports update of a key with a value.

What operations are supported?

10

What are hashmaps / dictionaries?

{

 id: 14823777

 name_first: "David",

 name_last: "Binder",

 favourite_movie_of_all_time_and_space: "La Nuit de Varennes"

}

Bad: Different key length.
Bad: Keys are not random, which can lead to
degenerate data structures.

What are some problems for implementations?

11

What are hashmaps / dictionaries?
Use hashed keys instead!

{

 fqrstvnx: 14823777,

 yxdagxqz: "David",

 krgjkhsc: "Binder",

 etrcukad: "La Nuit de Varennes"

}

hash(id) = fqrstvnx

hash(name_first) = yxdagxqz

hash(name_last) = krgjkhsc

hash(favourite_movie_of_all_time_and_space) = etrcukad

Random distribution of keys!

Fixed length of keys!

We also have to deal with hash-collisions :(
We use short, non-cryptographic hashes.

12

Advanced Technique:
Hash Array Mapped Tries

13

A History of Clojure
Rich Hickey @ History of Programming Languages Conference

71:12 Rich Hickey

right answer is not good enough. Not all isomorphisms are viable alternatives; the leverage provided
by indexing support matters. I felt Clojure would be a non-starter for practitioners without credible
substitutes for O(1) arrays and maps.

3.4.1 Persistence and Immutability. What I thought would be a simple matter of shopping for
best-of-breed functional data structures ended up being a search and engineering exercise that
dominated my early Clojure work, as evidenced by the gap in commits during the winter of 2006/7
(�gure 2). I started by looking at Okasaki [1999], and found the data structures too slow for my use,
and felt some of the amortized complexity would be di�cult to explain to working programmers.
I also concluded that it mattered not at all to me that the implementation of the data structures
be purely functional, only that the interface they presented to consumers was immutable and
persistent.
This led me to look at the fat node approach to making data structures persistent [Driscoll

et al. 1989]. However, the in-place updating required to obtain the advertised bounds made them
impractical for multithreaded use, where extensive synchronization would be required. So I did in
fact care that, post construction, the structures would never be subject to mutation—there could be
no faking it.

I then set out to �nd a treelike implementation for hash maps which would be amenable to the
path-copying with structural sharing approach for persistence. I found what I wanted in hash array
mapped tries (HAMTs) [Bagwell 2001]. I built (in Java) a persistent implementation of HAMTs with
branching factor of 32, using Java’s fast System.arrayCopy during path copying. The node arrays
are freshly allocated and imperatively manipulated during node construction, and never mutated
afterwards. Thus the implementation is not purely functional but the resulting data structures are
immutable after construction. I designed and built persistent vectors on similar 32-way branching
trees, with the path copying strategy. Performance was excellent, more akin to O(1) than the
theoretical bounds of O(logN).
This was the breakthrough moment for Clojure. Only after this did I feel like Clojure could be

practical, and I moved forward with enthusiasm to release it later that year (2007).
Clojure’s success with and evangelism of persistent HAMTs in�uenced their subsequent adoption

by Scala (release 2.8, in 2010), Haskell (unordered containers, in 2011), Erlang (large maps, release 18,
in 2015) and others. Bagwell and Rompf [2011] went on to re�ne Clojure’s approach to immutable
vectors with RRB-Trees.

3.4.2 Information Programming—“just use maps”. A key question for language choice (and thus
software design) is: how well do the primary language constructs map to your primary problems? If
your program deals with information, these are among your primary problems: information is sparse,
incrementally accumulated, open/ extensible, conditionally available, formed into arbitrary sets in
di�erent contexts, merged with other information etc. Thus the answers to these questions become
important: Can you determine what information is present? Is there an algebra for information
selection? Merging? How di�cult is it to accumulate information in a processing pipeline? Are
attributes �rst-class? Is there a system for avoiding attribute name con�icts?
In my experience, statically typed class/record systems are a mismatch for these information

management tasks. Aggregate types (classes/records) are the primary drivers of attribute semantics
rather than merely being context-dependent aggregations. They are fully enumerated and closed.
Though optionality/availability of a �eld/attribute is not a property of a data structure (it’s a
property of a context of use), you must declare things as Nullable or Maybe once and for all.
Attribute names are parochial. Attribute/�eld names are often not �rst class. There is no algebra for
merging/selection. Incremental information acquisition is hard. Mapping tools (like ORMs) to/from
the parochial type models are common and necessary. Type errors, pattern matching errors and

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 71. Publication date: June 2020.

14

A History of Clojure
Rich Hickey @ History of Programming Languages Conference

71:12 Rich Hickey

right answer is not good enough. Not all isomorphisms are viable alternatives; the leverage provided
by indexing support matters. I felt Clojure would be a non-starter for practitioners without credible
substitutes for O(1) arrays and maps.

3.4.1 Persistence and Immutability. What I thought would be a simple matter of shopping for
best-of-breed functional data structures ended up being a search and engineering exercise that
dominated my early Clojure work, as evidenced by the gap in commits during the winter of 2006/7
(�gure 2). I started by looking at Okasaki [1999], and found the data structures too slow for my use,
and felt some of the amortized complexity would be di�cult to explain to working programmers.
I also concluded that it mattered not at all to me that the implementation of the data structures
be purely functional, only that the interface they presented to consumers was immutable and
persistent.
This led me to look at the fat node approach to making data structures persistent [Driscoll

et al. 1989]. However, the in-place updating required to obtain the advertised bounds made them
impractical for multithreaded use, where extensive synchronization would be required. So I did in
fact care that, post construction, the structures would never be subject to mutation—there could be
no faking it.

I then set out to �nd a treelike implementation for hash maps which would be amenable to the
path-copying with structural sharing approach for persistence. I found what I wanted in hash array
mapped tries (HAMTs) [Bagwell 2001]. I built (in Java) a persistent implementation of HAMTs with
branching factor of 32, using Java’s fast System.arrayCopy during path copying. The node arrays
are freshly allocated and imperatively manipulated during node construction, and never mutated
afterwards. Thus the implementation is not purely functional but the resulting data structures are
immutable after construction. I designed and built persistent vectors on similar 32-way branching
trees, with the path copying strategy. Performance was excellent, more akin to O(1) than the
theoretical bounds of O(logN).
This was the breakthrough moment for Clojure. Only after this did I feel like Clojure could be

practical, and I moved forward with enthusiasm to release it later that year (2007).
Clojure’s success with and evangelism of persistent HAMTs in�uenced their subsequent adoption

by Scala (release 2.8, in 2010), Haskell (unordered containers, in 2011), Erlang (large maps, release 18,
in 2015) and others. Bagwell and Rompf [2011] went on to re�ne Clojure’s approach to immutable
vectors with RRB-Trees.

3.4.2 Information Programming—“just use maps”. A key question for language choice (and thus
software design) is: how well do the primary language constructs map to your primary problems? If
your program deals with information, these are among your primary problems: information is sparse,
incrementally accumulated, open/ extensible, conditionally available, formed into arbitrary sets in
di�erent contexts, merged with other information etc. Thus the answers to these questions become
important: Can you determine what information is present? Is there an algebra for information
selection? Merging? How di�cult is it to accumulate information in a processing pipeline? Are
attributes �rst-class? Is there a system for avoiding attribute name con�icts?
In my experience, statically typed class/record systems are a mismatch for these information

management tasks. Aggregate types (classes/records) are the primary drivers of attribute semantics
rather than merely being context-dependent aggregations. They are fully enumerated and closed.
Though optionality/availability of a �eld/attribute is not a property of a data structure (it’s a
property of a context of use), you must declare things as Nullable or Maybe once and for all.
Attribute names are parochial. Attribute/�eld names are often not �rst class. There is no algebra for
merging/selection. Incremental information acquisition is hard. Mapping tools (like ORMs) to/from
the parochial type models are common and necessary. Type errors, pattern matching errors and

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 71. Publication date: June 2020.

15

Hash Array Mapped Trie
It's (Hash (Array-Mapped (Trie))), really.

• Q1: What is a trie?  

• Q2: What is an array-mapped trie? 

• Q3: What is a hash array-mapped trie?

A: A tree that contain prefixes.

A: An efficient representation of tries.

A: An efficient trie that contains prefixes of hashes.

16

Q1: What is a trie?
A tree that contains prefixes

164 Data-Structural Bootstrapping

labelled by the characters of the string, in order. For example, the trie repre-
senting the strings " c a t " , " dog", " c a r " , and " c a r t " might be drawn

Note that entering a string into a trie also enters all the prefixes of that string
into the trie. Only some of these prefixes constitute valid entries. In this exam-
ple, " c " , "ca" , and " c a r " are all prefixes of " c a r t " but only " c a r " is
valid. We therefore mark each node as either valid or invalid. For finite maps,
we accomplish this with the built-in option datatype

datatype a option = NONE | SOME of a

If a given node is invalid, we mark it with NONE. If the node is valid, and the
corresponding string is mapped to the value x, then we mark it with SOME X.

The critical remaining question is how to represent the edges leaving a node.
Ordinarily, we would represent the children of a multiway node as a list of
trees, but here we also need to represent the edge labels. Depending on the
choice of base type and the expected density of the trie, we might represent the
edges leaving a node as a vector, an association list, a binary search tree, or
even, if the base type is itself a list or a string, another trie! But all of these are
just finite maps from edges labels to tries. We abstract away from the particular
representation of these edge maps by assuming that we are given a structure M
implementing finite maps over the base type. Then the representation of a trie
is simply

datatype a Map = TRIE of a option x a Map M.Map

The empty trie is represented by a single invalid node with no children.

val empty = TRIE (NONE, M.empty)

To lookup a string, we lookup each character in the appropriate edge map.
When we reach the final node, we check whether it is valid or invalid.

fun lookup ([], TRIE (NONE, m)) = raise NOTFOUND
| lookup ([], TRIE (SOME X, m)) = x
| lookup (k :: ks, TRIE (V, m)) = lookup (ks, M.lookup (/c, m))

Q: What words are present in this trie?

Q: What is the branching factor?

A: Unclear. We have to store info in nodes.

A: 26 (letters of alphabet)
A*: A power of 2 in real implementations
A**: 2^5 = 32 very common

17

Q2: What is an array-mapped trie?
An efficient representation of tries

What does Okasaki have to say?

164 Data-Structural Bootstrapping

labelled by the characters of the string, in order. For example, the trie repre-
senting the strings " c a t " , " dog", " c a r " , and " c a r t " might be drawn

Note that entering a string into a trie also enters all the prefixes of that string
into the trie. Only some of these prefixes constitute valid entries. In this exam-
ple, " c " , "ca" , and " c a r " are all prefixes of " c a r t " but only " c a r " is
valid. We therefore mark each node as either valid or invalid. For finite maps,
we accomplish this with the built-in option datatype

datatype a option = NONE | SOME of a

If a given node is invalid, we mark it with NONE. If the node is valid, and the
corresponding string is mapped to the value x, then we mark it with SOME X.

The critical remaining question is how to represent the edges leaving a node.
Ordinarily, we would represent the children of a multiway node as a list of
trees, but here we also need to represent the edge labels. Depending on the
choice of base type and the expected density of the trie, we might represent the
edges leaving a node as a vector, an association list, a binary search tree, or
even, if the base type is itself a list or a string, another trie! But all of these are
just finite maps from edges labels to tries. We abstract away from the particular
representation of these edge maps by assuming that we are given a structure M
implementing finite maps over the base type. Then the representation of a trie
is simply

datatype a Map = TRIE of a option x a Map M.Map

The empty trie is represented by a single invalid node with no children.

val empty = TRIE (NONE, M.empty)

To lookup a string, we lookup each character in the appropriate edge map.
When we reach the final node, we check whether it is valid or invalid.

fun lookup ([], TRIE (NONE, m)) = raise NOTFOUND
| lookup ([], TRIE (SOME X, m)) = x
| lookup (k :: ks, TRIE (V, m)) = lookup (ks, M.lookup (/c, m))

Typical complexity theorist :D

18

Q2: What is an array-mapped trie?
A naive representation of tries:

Every little box is 64 bit!
Vast majority contain null pointers!

19

Q3: What is a hash array-mapped trie?
An efficient trie that contains prefixes of hashes

Enter Phil Bagwell!

• Problem: Most nodes are sparse! There are only very few outgoing edges.

• Solution: Every node contains a bitmap and an array of pointers!

• The bitmap says which outgoing edges exist.

• The array contains the pointers for the outgoing edges.

20

Usually only needs 32 or 64 Bit!

Only needs: #outgoing-edges * size-of-pointer space.

Q2: What is an array-mapped trie?

21

Q3: What is a hash array-mapped trie?
A tree that contains prefixes of hashes

164 Data-Structural Bootstrapping

labelled by the characters of the string, in order. For example, the trie repre-
senting the strings " c a t " , " dog", " c a r " , and " c a r t " might be drawn

Note that entering a string into a trie also enters all the prefixes of that string
into the trie. Only some of these prefixes constitute valid entries. In this exam-
ple, " c " , "ca" , and " c a r " are all prefixes of " c a r t " but only " c a r " is
valid. We therefore mark each node as either valid or invalid. For finite maps,
we accomplish this with the built-in option datatype

datatype a option = NONE | SOME of a

If a given node is invalid, we mark it with NONE. If the node is valid, and the
corresponding string is mapped to the value x, then we mark it with SOME X.

The critical remaining question is how to represent the edges leaving a node.
Ordinarily, we would represent the children of a multiway node as a list of
trees, but here we also need to represent the edge labels. Depending on the
choice of base type and the expected density of the trie, we might represent the
edges leaving a node as a vector, an association list, a binary search tree, or
even, if the base type is itself a list or a string, another trie! But all of these are
just finite maps from edges labels to tries. We abstract away from the particular
representation of these edge maps by assuming that we are given a structure M
implementing finite maps over the base type. Then the representation of a trie
is simply

datatype a Map = TRIE of a option x a Map M.Map

The empty trie is represented by a single invalid node with no children.

val empty = TRIE (NONE, M.empty)

To lookup a string, we lookup each character in the appropriate edge map.
When we reach the final node, we check whether it is valid or invalid.

fun lookup ([], TRIE (NONE, m)) = raise NOTFOUND
| lookup ([], TRIE (SOME X, m)) = x
| lookup (k :: ks, TRIE (V, m)) = lookup (ks, M.lookup (/c, m))

Q: What is the maximal depth?
A: 45
pneumonoultramicroscopicsilicovolcanoconiosis

A*: Length of Hash / Bits per Edge
A**: 64 / 5 (unordered-containers)

22

Let's (finally) see some code!

23

Hash Array-Mapped Tries in Haskell
The unordered-containers library

data HashMap k v

 = Empty

 | BitmapIndexed !Bitmap !(A.Array (HashMap k v))

 | Full !(A.Array (HashMap k v))

 | Leaf !Hash !(Leaf k v)

 | Collision !Hash !(A.Array (Leaf k v))

24

Resources

25

Some Resources I Used

• Chris Okasaki: Purely Functional Data Structures

• Phil Bagwell: Fast And Space Efficient Trie Searches (2000)

• Phil Bagwell: Ideal Hash Trees (2001)

• Ritch Hickey: A History of Clojure  
https://www.youtube.com/watch?v=nD-QHbRWcoM

• The unordered-containers library on Hackage

26

https://www.youtube.com/watch?v=nD-QHbRWcoM

