Subtyping and Type Inference

David Binder, University of Tubingen, 2024

Happy to be back!

Dependent Co/Data Types

Dependent Co/Data Types

 Symmetric dependent data and
codata types.

Dependent Co/Data Types

 Symmetric dependent data and
codata types.

* De/-Refunctionalize all the types!

Dependent Co/Data Types

 Symmetric dependent data and
codata types.

* De/-Refunctionalize all the types!

 Accepted at OOPSLA '24

Dependent Co/Data Types

 Symmetric dependent data and
codata types.

* De/-Refunctionalize all the types!

 Accepted at OOPSLA '24

* We are currently preparing the
camera-ready version.

Dependent Co/Data Types

 Symmetric dependent data and
codata types.

* De/-Refunctionalize all the types!

 Accepted at OOPSLA '24

* We are currently preparing the
camera-ready version.

Deriving Dependently-Typed OOP from First Principles

DAVID BINDER, University of Tiibingen, Germany
INGO SKUPIN, University of Tiibingen, Germany

TIM SUBERKRUB, Aleph Alpha, Germany

KLAUS OSTERMANN, University of Tiibingen, Germany

The expression problem describes how most types can easily be extended with new ways to produce the type or
new ways to consume the type, but not both. When abstract syntax trees are defined as an algebraic data type,
for example, they can easily be extended with new consumers, such as print or eval, but adding a new con-
structor requires the modification of all existing pattern matches. The expression problem is one way to eluci-
date the difference between functional or data-oriented programs (easily extendable by new consumers) and
object-oriented programs (easily extendable by new producers). This difference between programs which are
extensible by new producers or new consumers also exists for dependently typed programming, but with one
core difference: Dependently-typed programming almost exclusively follows the functional programming
model and not the object-oriented model, which leaves an interesting space in the programming language
landscape unexplored. In this paper, we explore the field of dependently-typed object-oriented programming
by deriving it from first principles using the principle of duality. That is, we do not extend an existing object-
oriented formalism with dependent types in an ad-hoc fashion, but instead start from a familiar data-oriented
language and derive its dual fragment by the systematic use of defunctionalization and refunctionalization.
Our central contribution is a dependently typed calculus which contains two dual language fragments. We
provide type- and semantics-preserving transformations between these two language fragments: defunction-
alization and refunctionalization. We have implemented this language and these transformations and use this
implementation to explain the various ways in which constructions in dependently typed programming can
be explained as special instances of the general phenomenon of duality.

CCS Concepts: « Theory of computation — Lambda calculus; Type theory.
Additional Key Words and Phrases: Dependent Types, Expression Problem, Defunctionalization

ACM Reference Format:
David Binder, Ingo Skupin, Tim Siiberkriib, and Klaus Ostermann. 2020. Deriving Dependently-Typed OOP
from First Principles. Proc. ACM Program. Lang. 1, OOPSLA, Article 1 (January 2020), 46 pages.

1 INTRODUCTION

There are many programming paradigms, but dependently typed programming languages almost
exclusively follow the functional programming model. In this paper, we show why dependently-
typed programming languages should also include object-oriented principles, and how this can
be done. One of the main reasons why object-oriented features should be included is a conse-
quence of how the complexity of the domain is modeled in the functional and object-oriented
paradigm. Functional programmers structure the domain using data types defined by their con-
structors, whereas object-oriented programmers structure the domain using classes and interfaces
defined by methods. This choice has important implications for the extensibility properties of large
programs, which are only more accentuated for dependently typed programs.

polarity-lang.github.io

We just made it public!

http://polarity-lang.github.io

ithub.lo

We just made it public!

ﬂ Polarity

Data Types
Codata Types
Definitions
Codefinitions
Comments
Typed Holes

The Main Expression

Language Reference Install

Language Reference

Data Types

The simplest form of data types do not have parameters or indices. In that case, the
constructors of the data type can be given as a comma-separated list. As with all syntactic
constructs, we always allow trailing commas.

data Bool { True, False, }

In the more general case we have to specify the precise type that a constructor constructs.
Therefore, the above data type declaration can be written more explicitly as:

data Bool { True: Bool, False: Bool }

A simple example of a parameterized type is the type of singly-linked lists of some type a. In
that case, we have to specify both the parameters of the type constructor List, and the
instantiations of the term constructors Nil and Cons. For the parameter of the type constructor
List we make use of the impredicative type universe, which is written Type.

4

Publications

http://polarity-lang.github.io

Subtyping and Type Inference

What are the types that we want
to infer?

What do we want to achieve?

Example 1: When should we infer joins.

What do we want to achieve?

Example 1: When should we infer joins.

 What is the type of:

Ax .if x then True else 5

What do we want to achieve?

Example 1: When should we infer joins.

 What is the type of:

Ax .if x then True else 5

e We infer:

3 - BuN

What do we want to achieve?

Example 1: When should we infer joins.

 What is the type of:

Ax .if x then True else 5

e We infer:

3 - BuN

e Joins are for combining the types of multiple output paths.

What do we want to achieve?

Example 2: When should we infer meets?

What do we want to achieve?

Example 2: When should we infer meets?

 What is the type of:

AX....(not x)...(x + 1)

What do we want to achieve?

Example 2: When should we infer meets?

 What is the type of:

AX....(not x)...(x + 1)

e We infer:

What do we want to achieve?

Example 2: When should we infer meets?

 What is the type of:

AX....(not x)...(x + 1)

e We infer:

BN — ...

 Meets are for combining multiple requirements on inputs.

What do we want to achieve?
Example 3: When should we infer the top type?

What do we want to achieve?
Example 3: When should we infer the top type?

 What is the type of:
AX.5

What do we want to achieve?
Example 3: When should we infer the top type?

 What is the type of:
AX.5

e We infer:

What do we want to achieve?
Example 3: When should we infer the top type?

 What is the type of:
AX.5

e We infer:
T = N

* The top type is for inputs which are ignored.

What do we want to achieve?
Example 3: When should we infer the top type?

 What is the type of:
AX.5

e We infer:
T = N

* The top type is for inputs which are ignored.

» The type variable in Va .a — N is not needed, because it doesn't relate an
iInput with an output.

How does type inference work?

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

* |n Hindley-Milner type inference we have to solve equality constraints:

10y =7T(,...,0,=T,]}

11

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

* |n Hindley-Milner type inference we have to solve equality constraints:

10y =7T(,...,0,=T,]}

* For algebraic subtyping we have to solve inequality constraints:

o <:75...,0, <. 7T}

11

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

* |n Hindley-Milner type inference we have to solve equality constraints:

10y =7T(,...,0,=T,]}

* For algebraic subtyping we have to solve inequality constraints:

o <:75...,0, <. 7T}

* The details were figured out by F. Pottier and S. Dolan.

11

High School Algebra

What is a solution?

High School Algebra

What is a solution?

* The solution of a system of equalities

ly=34+x,x=2,y=2}

IS an assignment of values to variables:
xX:=2,y:=5,7:=35

12

High School Algebra

What is a solution?

* The solution of a system of equalities

ly=34+x,x=2,y=2}

IS an assignment of values to variables:
xX:=2,y:=5,7:=35

* The solution of a system of inequalities
x<2,x<y,y<1, =2<x, 0Ly}

IS an assignment of bounds to variables:

12

Core ldea: Keep Track of Variable Bounds

Core ldea: Keep Track of Variable Bounds

 We keep track of upper and lower bounds:

1015 o050, <0< {Tyy .57, }

Core ldea: Keep Track of Variable Bounds

 We keep track of upper and lower bounds:
1015 o050, <0< {Tyy .57, }
« When we solve a constraint a <: & we add it to the upper bounds

1015 o0y O,) <00 < {Tysees Ty}

Core ldea: Keep Track of Variable Bounds

 We keep track of upper and lower bounds:
1015 o050, <0< {Tyy .57, }
« When we solve a constraint a <: & we add it to the upper bounds

1015 o0y O,) <00 < {Tysees Ty}

e We have to make sure It Is consistent with lower bounds:

0, <:¢&...,0,<:¢&

13

Using Subtyping Type Inference
for Better Error Messages

Getting Into the Flow ,

we Getting into the Flow
Towa rds Better Type- Error Messages Towards Better Type Error Messages for Constraint-Based Type Inference

ISHAN BHAN UKA, HKUST, Hong Kong, China

LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tiibingen, Germany

JONATHAN IMMANUEL BRACHTHAUSER, University of Tiibingen, Germany

Creating good type error messages for constraint-based type inference systems is difficult. Typical type error
messages reflect implementation details of the underlying constraint-solving algorithms rather than the
specific factors leading to type mismatches. We propose using subtyping constraints that capture data flow to
classify and explain type errors. Our algorithm explains type errors as faulty data flows, which programmers
are already used to reasoning about, and illustrates these data flows as sequences of relevant program locations.
We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative
evaluation does not show that flow-based messages improve the localization or understanding of the causes
of type errors, the qualitative evaluation suggests a real need and demand for flow-based messages.

CCS Concepts: » Software and its engineering — General programming languages; « Theory of
computation — Program analysis; Type theory; - Human-centered computing — Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data flow, constraint solving

ACM Reference Format:

Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthduser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLAZ2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION 237

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
specifically with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program’, where operator (*) stands for string concatenation:

4 let appInfo = ("My_Application", 1.5)
5 let process (name, vers) = name * show_major (parse_version vers)
6 let main() = process applInfo

15

Getting Into the Flow .,

we Getting into the Flow
Towa rds Better Type- Error Messages Towards Better Type Error Messages for Constraint-Based Type Inference

ISHAN BHAN UKA, HKUST, Hong Kong, China

LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tiibingen, Germany

JONATHAN IMMANUEL BRACHTHAUSER, University of Tiibingen, Germany

| Creating good type error messages for constraint-based type inference systems is difficult. Typical type error
® P rese nted at OO PS LA 2 3 messages reflect implementation details of the underlying constraint-solving algorithms rather than the
specific factors leading to type mismatches. We propose using subtyping constraints that capture data flow to
classify and explain type errors. Our algorithm explains type errors as faulty data flows, which programmers
are already used to reasoning about, and illustrates these data flows as sequences of relevant program locations.
We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative
evaluation does not show that flow-based messages improve the localization or understanding of the causes
of type errors, the qualitative evaluation suggests a real need and demand for flow-based messages.

CCS Concepts: » Software and its engineering — General programming languages; « Theory of
computation — Program analysis; Type theory; - Human-centered computing — Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data flow, constraint solving

ACM Reference Format:

Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthduser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLAZ2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION 237

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
specifically with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program’, where operator (*) stands for string concatenation:

4 let appInfo = ("My_Application", 1.5)
5 let process (name, vers) = name * show_major (parse_version vers)
6 let main() = process applInfo

15

Getting Into the Flow ,

we Getting into the Flow
Towa rds Better Type- Error Messages Towards Better Type Error Messages for Constraint-Based Type Inference

ISHAN BHAN UKA, HKUST, Hong Kong, China

LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tiibingen, Germany

JONATHAN IMMANUEL BRACHTHAUSER, University of Tiibingen, Germany

® P .t d .t O O P S LA | 2 3 Creating good type error messages for constraint-based type inference systems is difficult. Typical type error
rese n e a messages reflect implementation details of the underlying constraint-solving algorithms rather than the
specific factors leading to type mismatches. We propose using subtyping constraints that capture data flow to

classify and explain type errors. Our algorithm explains type errors as faulty data flows, which programmers
are already used to reasoning about, and illustrates these data flows as sequences of relevant program locations.

® E I I I f H M t We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
r rO r eS S ag eS O r e integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative

i n fe re n C e a re u S u a I Iy b ad . evaluation does not show that flow-based messages improve the localization or understanding of the causes

of type errors, the qualitative evaluation suggests a real need and demand for flow-based messages.

CCS Concepts: » Software and its engineering — General programming languages; « Theory of
computation — Program analysis; Type theory; - Human-centered computing — Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data flow, constraint solving

ACM Reference Format:

Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthduser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLAZ2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION 237

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
specifically with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program’, where operator (*) stands for string concatenation:

4 let appInfo = ("My_Application", 1.5)
5 let process (name, vers) = name * show_major (parse_version vers)
6 let main() = process applInfo

15

Getting Into the Flow .,

we Getting into the Flow
Towa rds Better Type- Error Messages Towards Better Type Error Messages for Constraint-Based Type Inference

ISHAN BHAN UKA, HKUST, Hong Kong, China

LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tiibingen, Germany

JONATHAN IMMANUEL BRACHTHAUSER, University of Tiibingen, Germany

® P .t d .t O O P S LA | 2 3 Creating good type error messages for constraint-based type inference systems is difficult. Typical type error
rese n e a messages reflect implementation details of the underlying constraint-solving algorithms rather than the
specific factors leading to type mismatches. We propose using subtyping constraints that capture data flow to

classify and explain type errors. Our algorithm explains type errors as faulty data flows, which programmers
are already used to reasoning about, and illustrates these data flows as sequences of relevant program locations.

® E I I I f H M t We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
r rO r eS S ag eS O r e integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative

i n fe re n C e a re u S u a I Iy b ad . evaluation does not show that flow-based messages improve the localization or understanding of the causes

of type errors, the qualitative evaluation suggests a real need and demand for flow-based messages.

CCS Concepts: » Software and its engineering — General programming languages; « Theory of
computation — Program analysis; Type theory; - Human-centered computing — Human computer

* Type Inference with Subtyping interation (HCY.

Additional Key Words and Phrases: type inference, error messages, subtyping, data flow, constraint solving

Constraints can do better! ACM Reference Formats

Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthduser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLAZ2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION 237

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
specifically with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program’, where operator (*) stands for string concatenation:

4 let appInfo = ("My_Application", 1.5)
5 let process (name, vers) = name * show_major (parse_version vers)
6 let main() = process applInfo

15

One central idea!
Weread ¢ <. T as:
"A value of type o flows into a
position where a 7 Is expected"”

16

Classify Constraint Solving Errors

Level-0 Error

let x
let vy

2;
1f x then true else false;

18

Level-0 Error

let x
let vy

2;
1f x then true else false;

Int > Oy > Bool

18

Level-1 Error

let f x = (not x, x + 1);

Level-1 Error

let f x = (not x, x + 1);

U

/ Int
I

Bool

Level-1 Error

let x

2
1et y " "

1f true then x else "x

Level-1 Error

2
1f true then x else "x"

let x
let vy

Int \ ..
/

Str

Level-2 Error

let ¢ x = (not x
. 1f true then x else 5)

Level-2 Error

let ¢ x = (not x
. 1f true then x else 5)

Bool
o

2%

\\\\\\\\\\\\7; lgret
Int /

Level-n Errors

let x = 2; | . ool
let v = if x then true else false; nt rX 7 BOO
(a) Program with Level-0 error.

Int
let f x = (not x, x + 1); Ofx<

Bool

Int

let x = 2 \ay
let y = if true then x else "x" ///////%

let ¢ x = (not x Ax
, if true then x else 5) >IBM
Int

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

22

Explaining Type Errors With Data Flow

HM?

[ERROR] Type “int~ does not match “string
(int) ---> (?a) <--- (string)

® (int) comes from
- 1.1 let x = 2

- 1.2 1let y = 1if true then x else "x"
g A

® (7a) 1s assumed here

A - 1.2 1let y = if true then x else "x"
| AAAAAAAAAAAAAAAAAAAAAAA
® (string) comes from

- 1.2 let y = if true then x else "x"

AANA

Fig. 5. Level-1 “confluence” error with convergent flows

23

Keeping Irack of Data Flow In
Constraints

Terms & Types

Annotate terms with locations

Location { »= program location
Term e n= x' |unit? | mY | truel | false® | (if etheneelsee)’ |e+fe| (Axf. €)' | (ee)’

| [e.e]® [mi(e)” | m2(e)” | 11(e)” | 12(e)" | case e of {11 (x") = € n2(x') = e}

Ordinary Term Language

25

Terms & Types

Annotate terms with locations

Annotated with locations
Location { = program location F

Term e n= x' |unit? | mY | truel | false® | (if etheneelsee)’ |e+fe| (Axf. €)' | (ee)’

| [e.e]® [mi(e)” | m2(e)” | 11(e)” | 12(e)" | case e of {11 (x") = € n2(x') = e}

Ordinary Term Language

25

Terms & Types

Annotate types with provenances

p-plelelply |plg | P17 | 1% | (P17 | [p]5

TypeCT,(S = af | 1P | Int? |Booll |t =P r|rl r|r®P 1
Ordinary Types

26

Provenance P

Terms & Types

Annotate types with provenances

p-plelelply |plg | P17 | 1% | (P17 | [p]5

al |12 | Int? |Bool? |t =P r|r@P r|TQ®P T

Provenance P

TypeC T,0
Ordinary Types Annotated with Provenances

26

Generating and Solving Constraints

Two Judgement Forms

Constraint Q= r1<:7T
Context = €e|T:(x:a)
State o= {bounds: T<:a<:7T, errors: p}

Generating and Solving Constraints

Two Judgement Forms

Constraint Q= r1<:7T
Context = €e|T:(x:a)
State o= {bounds: T<:a<:7T, errors: p}

Generating and Solving Constraints

Two Judgement Forms

Constraint Q= r1<:7T
Context = €e|T:(x:a)
State o= {bounds: T<:a<:7T, errors: p}

Generating and Solving Constraints

Two Judgement Forms

Constraint Q :

T<:T

Context = €e|T:(x:a)

State o= {bounds: T<:a<:7T, errors: p}

Collect bounds for unification variables j

Tracking Provenance

Dataflows begin in introduction forms

T-LiT

C+nt:intt

Tracking Provenance

Dataflows begin in introduction forms

T-LiT

Datatlow starts at integer literal

C+nt:intt

Tracking Provenance

Dataflows end In elimination forms

T-PLUs
ke : 1o cons (1 <: Intf)
C'Fep:1 cons(ry <: lntf)
I' F eg + e1 : Intt

29

Tracking Provenance

Dataflows end In elimination forms

Dataflow ends at addition

T-Prus /N~ N

'k ey : 1o cons(1y <: lnt
['Fer:m cons(7] <: lntf)

I' F eg + e1 : Intt

29

Tracking Provenance

Provenance passes through some constructs

T-IFTHENELSE

a fresh
['Fey:m I'Fer:m I'Fe3: 13
cons(7r; <: Bool?) cons(ry <: at) cons(r3 <: a')

I' + (if e; then e, else 63)f ot

30

Tracking Provenance

Provenance passes through some constructs

T-I+ THENFISE Dataflow passes through if-then-else

a fresh N

['Fey:m I'Fer:m I'Fe3: 13
Rl ¢ \ (Y
cons(7; <: Bool") cons(my <: ") cons(73 <: o)

I' + (if e; then e, else 63)f ot 4/

30

Empirical Evaluation

Empirical Results
Location and Understandability

Q2: “How much did the error message help you to locate the problem?”

. easy1 easy?2 easy3d medium1 medium?2 medium3 medium4 hard1 hard3
100/0'- -] .-— -.- .. I --- - —_-

75%:-

50%:-

HEm BRE = HEmm B
A B C A B C A B C A B C A B C A B C A B C A B C A B C

Q3: "How much did the error message help you to understand the problem?”

easy1 easy?2 easy3d medium1 medium?2 medium3 medium4 hard1 hard3

oo | — g - — ... l-. — lII .-- . -
25%-

75%"
O%-II .-. -I- H —.— ... 1B --I I.I
A B C A B C A B C A B C A B C A B C A B C A B C A B C

Fig. 9. Participants answering the respective question on a five-point Likert scale from “Not helpful” (top,
red) to “Very helpful” (bottom, blue). We compare conditions HM? (A), OCaml (B), and Helium (C).

32

50%:-

Ongoing and Future Work

Using Data Flow as an Explanatory Device

Useful for more than just typechecking?

* Our hypothesis is that (functional) programmers reason about programs using
data flow.

 |f that is the case, then data flow Iis a good explanatory device when
explaining errors.

 We showed how to do it for type inference, but what about: Effect systems,
type classes, linear type systems, region based memory management.

34

Time for your questions!

