
David Binder, University of Tübingen, 2024

Subtyping and Type Inference
Software Technology Group, Utrecht University, March 2024

1

 Happy to be back!

2

Dependent Co/Data Types

3

• Symmetric dependent data and
codata types.

Dependent Co/Data Types

3

• Symmetric dependent data and
codata types.

• De/-Refunctionalize all the types!

Dependent Co/Data Types

3

• Symmetric dependent data and
codata types.

• De/-Refunctionalize all the types!

• Accepted at OOPSLA '24

Dependent Co/Data Types

3

• Symmetric dependent data and
codata types.

• De/-Refunctionalize all the types!

• Accepted at OOPSLA '24

• We are currently preparing the
camera-ready version.

Dependent Co/Data Types

3

• Symmetric dependent data and
codata types.

• De/-Refunctionalize all the types!

• Accepted at OOPSLA '24

• We are currently preparing the
camera-ready version.

Dependent Co/Data Types
1

Deriving Dependently-Typed OOP from First Principles
DAVID BINDER, University of Tübingen, Germany
INGO SKUPIN, University of Tübingen, Germany
TIM SÜBERKRÜB, Aleph Alpha, Germany
KLAUS OSTERMANN, University of Tübingen, Germany

The expression problem describes howmost types can easily be extended with newways to produce the type or
new ways to consume the type, but not both. When abstract syntax trees are defined as an algebraic data type,
for example, they can easily be extended with new consumers, such as print or eval, but adding a new con-
structor requires the modification of all existing pattern matches. The expression problem is one way to eluci-
date the difference between functional or data-oriented programs (easily extendable by new consumers) and
object-oriented programs (easily extendable by new producers). This difference between programs which are
extensible by new producers or new consumers also exists for dependently typed programming, but with one
core difference: Dependently-typed programming almost exclusively follows the functional programming
model and not the object-oriented model, which leaves an interesting space in the programming language
landscape unexplored. In this paper, we explore the field of dependently-typed object-oriented programming
by deriving it from first principles using the principle of duality. That is, we do not extend an existing object-
oriented formalism with dependent types in an ad-hoc fashion, but instead start from a familiar data-oriented
language and derive its dual fragment by the systematic use of defunctionalization and refunctionalization.
Our central contribution is a dependently typed calculus which contains two dual language fragments. We
provide type- and semantics-preserving transformations between these two language fragments: defunction-
alization and refunctionalization. We have implemented this language and these transformations and use this
implementation to explain the various ways in which constructions in dependently typed programming can
be explained as special instances of the general phenomenon of duality.

CCS Concepts: • Theory of computation→ Lambda calculus; Type theory.

Additional Key Words and Phrases: Dependent Types, Expression Problem, Defunctionalization

ACM Reference Format:
David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann. 2020. Deriving Dependently-Typed OOP
from First Principles. Proc. ACM Program. Lang. 1, OOPSLA, Article 1 (January 2020), 46 pages.

1 INTRODUCTION
There are many programming paradigms, but dependently typed programming languages almost
exclusively follow the functional programming model. In this paper, we show why dependently-
typed programming languages should also include object-oriented principles, and how this can
be done. One of the main reasons why object-oriented features should be included is a conse-
quence of how the complexity of the domain is modeled in the functional and object-oriented
paradigm. Functional programmers structure the domain using data types defined by their con-
structors, whereas object-oriented programmers structure the domain using classes and interfaces
defined bymethods.This choice has important implications for the extensibility properties of large
programs, which are only more accentuated for dependently typed programs.

Authors’ addresses: David Binder, Department of Computer Science, University of Tübingen, Sand 14, Tübingen, 72076,
Germany, david.binder@uni-tuebingen.de; Ingo Skupin, Department of Computer Science, University of Tübingen, Sand
14, Tübingen, 72076, Germany, skupin@informatik.uni-tuebingen.de; Tim Süberkrüb, Aleph Alpha, Grenzhöfer Weg 36,
Heidelberg, 69123, Germany, tim.sueberkrueb@aleph-alpha.com; Klaus Ostermann, Department of Computer Science, Uni-
versity of Tübingen, Sand 14, Tübingen, 72076, Germany, klaus.ostermann@uni-tuebingen.de.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

3

polarity-lang.github.io
We just made it public!

4

http://polarity-lang.github.io

polarity-lang.github.io
We just made it public!

4

http://polarity-lang.github.io

Subtyping and Type Inference

5

What are the types that we want
to infer?

6

What do we want to achieve?
Example 1: When should we infer joins.

7

What do we want to achieve?
Example 1: When should we infer joins.

• What is the type of: 
  
 λx . if x then 𝚃𝚛𝚞𝚎 else 5

7

What do we want to achieve?
Example 1: When should we infer joins.

• What is the type of: 
  
 λx . if x then 𝚃𝚛𝚞𝚎 else 5

• We infer:  
 𝔹 → 𝔹 ⊔ ℕ

7

What do we want to achieve?
Example 1: When should we infer joins.

• What is the type of: 
  
 λx . if x then 𝚃𝚛𝚞𝚎 else 5

• We infer:  
 𝔹 → 𝔹 ⊔ ℕ

• Joins are for combining the types of multiple output paths.

7

What do we want to achieve?
Example 2: When should we infer meets?

8

What do we want to achieve?
Example 2: When should we infer meets?

• What is the type of: 
 
  λx . …(𝚗𝚘𝚝 x)…(x + 1)

8

What do we want to achieve?
Example 2: When should we infer meets?

• What is the type of: 
 
  λx . …(𝚗𝚘𝚝 x)…(x + 1)

• We infer: 
 𝔹 ⊓ ℕ → …

8

What do we want to achieve?
Example 2: When should we infer meets?

• What is the type of: 
 
  λx . …(𝚗𝚘𝚝 x)…(x + 1)

• We infer: 
 𝔹 ⊓ ℕ → …

• Meets are for combining multiple requirements on inputs.

8

What do we want to achieve?
Example 3: When should we infer the top type?

9

What do we want to achieve?
Example 3: When should we infer the top type?

• What is the type of: 
 
 λx.5

9

What do we want to achieve?
Example 3: When should we infer the top type?

• What is the type of: 
 
 λx.5

• We infer: 
 ⊤ → ℕ

9

What do we want to achieve?
Example 3: When should we infer the top type?

• What is the type of: 
 
 λx.5

• We infer: 
 ⊤ → ℕ

• The top type is for inputs which are ignored.

9

What do we want to achieve?
Example 3: When should we infer the top type?

• What is the type of: 
 
 λx.5

• We infer: 
 ⊤ → ℕ

• The top type is for inputs which are ignored.

• The type variable in is not needed, because it doesn't relate an
input with an output.

∀α . α → ℕ

9

How does type inference work?

10

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

11

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

• In Hindley-Milner type inference we have to solve equality constraints: 
 
 {σ1 = τ1, …, σn = τn}

11

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

• In Hindley-Milner type inference we have to solve equality constraints: 
 
 {σ1 = τ1, …, σn = τn}

• For algebraic subtyping we have to solve inequality constraints: 
 
  {σ1 <: τ1, …, σn <: τn}

11

Solving Inequality Constraints
The breakthroughs of Pottier and Dolan

• In Hindley-Milner type inference we have to solve equality constraints: 
 
 {σ1 = τ1, …, σn = τn}

• For algebraic subtyping we have to solve inequality constraints: 
 
  {σ1 <: τ1, …, σn <: τn}

• The details were figured out by F. Pottier and S. Dolan.

11

High School Algebra
What is a solution?

12

High School Algebra
What is a solution?
• The solution of a system of equalities  

 
  
 
is an assignment of values to variables:  

{y = 3 + x, x = 2, y = z}

x := 2, y := 5, z := 5

12

High School Algebra
What is a solution?
• The solution of a system of equalities  

 
  
 
is an assignment of values to variables:  

{y = 3 + x, x = 2, y = z}

x := 2, y := 5, z := 5

• The solution of a system of inequalities  
 
  
 
is an assignment of bounds to variables: 
 

{x ≤ 2, x ≤ y, y ≤ 1, − 2 ≤ x, 0 ≤ y}

−2 ≤ x ≤ 1, 0 ≤ y ≤ 1
12

Core Idea: Keep Track of Variable Bounds

13

Core Idea: Keep Track of Variable Bounds

• We keep track of upper and lower bounds: 
 
 {σ1, …, σn} <: α <: {τ1, …, τn}

13

Core Idea: Keep Track of Variable Bounds

• We keep track of upper and lower bounds: 
 
 {σ1, …, σn} <: α <: {τ1, …, τn}

• When we solve a constraint we add it to the upper bounds 
 

α <: ξ

{σ1, …, σn} <: α <: {τ1, …, τn, ξ}

13

Core Idea: Keep Track of Variable Bounds

• We keep track of upper and lower bounds: 
 
 {σ1, …, σn} <: α <: {τ1, …, τn}

• When we solve a constraint we add it to the upper bounds 
 

α <: ξ

{σ1, …, σn} <: α <: {τ1, …, τn, ξ}

• We have to make sure it is consistent with lower bounds: 
 
 σ1 <: ξ, …, σn <: ξ

13

Using Subtyping Type Inference
for Better Error Messages

14

Towards Better Type-Error Messages
Getting Into the Flow

15

237

Ge!ing into the Flow
Towards Be!er Type Error Messages for Constraint-Based Type Inference

ISHAN BHANUKA, HKUST, Hong Kong, China
LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Creating good type error messages for constraint-based type inference systems is di!cult. Typical type error
messages re"ect implementation details of the underlying constraint-solving algorithms rather than the
speci#c factors leading to type mismatches. We propose using subtyping constraints that capture data "ow to
classify and explain type errors. Our algorithm explains type errors as faulty data "ows, which programmers
are already used to reasoning about, and illustrates these data "ows as sequences of relevant program locations.
We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative
evaluation does not show that "ow-based messages improve the localization or understanding of the causes
of type errors, the qualitative evaluation suggests a real need and demand for "ow-based messages.

CCS Concepts: • Software and its engineering → General programming languages; • Theory of
computation → Program analysis; Type theory; • Human-centered computing → Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data "ow, constraint solving

ACM Reference Format:
Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
speci#cally with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program1, where operator (^) stands for string concatenation:

4 let appInfo = ("My␣Application", 1.5)

5 let process (name , vers) = name ^ show_major (parse_version vers)

6 let main() = process appInfo

1We use OCaml syntax for all code examples because of its prevalence in error localization literature.

Authors’ addresses: Ishan Bhanuka, HKUST, Hong Kong, China; Lionel Parreaux, HKUST, Hong Kong, China; David
Binder, University of Tübingen, Tübingen, Germany; Jonathan Immanuel Brachthäuser, University of Tübingen, Tübingen,
Germany.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART237
https://doi.org/10.1145/3622812

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Towards Better Type-Error Messages

• Presented at OOPSLA '23

Getting Into the Flow

15

237

Ge!ing into the Flow
Towards Be!er Type Error Messages for Constraint-Based Type Inference

ISHAN BHANUKA, HKUST, Hong Kong, China
LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Creating good type error messages for constraint-based type inference systems is di!cult. Typical type error
messages re"ect implementation details of the underlying constraint-solving algorithms rather than the
speci#c factors leading to type mismatches. We propose using subtyping constraints that capture data "ow to
classify and explain type errors. Our algorithm explains type errors as faulty data "ows, which programmers
are already used to reasoning about, and illustrates these data "ows as sequences of relevant program locations.
We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative
evaluation does not show that "ow-based messages improve the localization or understanding of the causes
of type errors, the qualitative evaluation suggests a real need and demand for "ow-based messages.

CCS Concepts: • Software and its engineering → General programming languages; • Theory of
computation → Program analysis; Type theory; • Human-centered computing → Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data "ow, constraint solving

ACM Reference Format:
Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
speci#cally with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program1, where operator (^) stands for string concatenation:

4 let appInfo = ("My␣Application", 1.5)

5 let process (name , vers) = name ^ show_major (parse_version vers)

6 let main() = process appInfo

1We use OCaml syntax for all code examples because of its prevalence in error localization literature.

Authors’ addresses: Ishan Bhanuka, HKUST, Hong Kong, China; Lionel Parreaux, HKUST, Hong Kong, China; David
Binder, University of Tübingen, Tübingen, Germany; Jonathan Immanuel Brachthäuser, University of Tübingen, Tübingen,
Germany.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART237
https://doi.org/10.1145/3622812

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Towards Better Type-Error Messages

• Presented at OOPSLA '23

• Error messages for HM type
inference are usually bad.

Getting Into the Flow

15

237

Ge!ing into the Flow
Towards Be!er Type Error Messages for Constraint-Based Type Inference

ISHAN BHANUKA, HKUST, Hong Kong, China
LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Creating good type error messages for constraint-based type inference systems is di!cult. Typical type error
messages re"ect implementation details of the underlying constraint-solving algorithms rather than the
speci#c factors leading to type mismatches. We propose using subtyping constraints that capture data "ow to
classify and explain type errors. Our algorithm explains type errors as faulty data "ows, which programmers
are already used to reasoning about, and illustrates these data "ows as sequences of relevant program locations.
We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative
evaluation does not show that "ow-based messages improve the localization or understanding of the causes
of type errors, the qualitative evaluation suggests a real need and demand for "ow-based messages.

CCS Concepts: • Software and its engineering → General programming languages; • Theory of
computation → Program analysis; Type theory; • Human-centered computing → Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data "ow, constraint solving

ACM Reference Format:
Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
speci#cally with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program1, where operator (^) stands for string concatenation:

4 let appInfo = ("My␣Application", 1.5)

5 let process (name , vers) = name ^ show_major (parse_version vers)

6 let main() = process appInfo

1We use OCaml syntax for all code examples because of its prevalence in error localization literature.

Authors’ addresses: Ishan Bhanuka, HKUST, Hong Kong, China; Lionel Parreaux, HKUST, Hong Kong, China; David
Binder, University of Tübingen, Tübingen, Germany; Jonathan Immanuel Brachthäuser, University of Tübingen, Tübingen,
Germany.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART237
https://doi.org/10.1145/3622812

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Towards Better Type-Error Messages

• Presented at OOPSLA '23

• Error messages for HM type
inference are usually bad.

• Type Inference with Subtyping
Constraints can do better!

Getting Into the Flow

15

237

Ge!ing into the Flow
Towards Be!er Type Error Messages for Constraint-Based Type Inference

ISHAN BHANUKA, HKUST, Hong Kong, China
LIONEL PARREAUX, HKUST, Hong Kong, China

DAVID BINDER, University of Tübingen, Germany

JONATHAN IMMANUEL BRACHTHÄUSER, University of Tübingen, Germany

Creating good type error messages for constraint-based type inference systems is di!cult. Typical type error
messages re"ect implementation details of the underlying constraint-solving algorithms rather than the
speci#c factors leading to type mismatches. We propose using subtyping constraints that capture data "ow to
classify and explain type errors. Our algorithm explains type errors as faulty data "ows, which programmers
are already used to reasoning about, and illustrates these data "ows as sequences of relevant program locations.
We show that our ideas and algorithm are not limited to languages with subtyping, as they can be readily
integrated with Hindley-Milner type inference. In addition to these core contributions, we present the results of
a user study to evaluate the quality of our messages compared to other implementations. While the quantitative
evaluation does not show that "ow-based messages improve the localization or understanding of the causes
of type errors, the qualitative evaluation suggests a real need and demand for "ow-based messages.

CCS Concepts: • Software and its engineering → General programming languages; • Theory of
computation → Program analysis; Type theory; • Human-centered computing → Human computer
interaction (HCI).

Additional Key Words and Phrases: type inference, error messages, subtyping, data "ow, constraint solving

ACM Reference Format:
Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthäuser. 2023. Getting into the
Flow: Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 237 (October 2023), 29 pages. https://doi.org/10.1145/3622812

1 INTRODUCTION

Much academic research has gone into producing better type error messages for functional pro-
gramming languages, dating back at least to Wand [1986]. Yet, one would be none the wiser by
looking at the error messages produced by existing compilers, including those compilers designed
speci#cally with learning in mind, such as Helium [Heeren et al. 2003]. For example, consider the
following OCaml program1, where operator (^) stands for string concatenation:

4 let appInfo = ("My␣Application", 1.5)

5 let process (name , vers) = name ^ show_major (parse_version vers)

6 let main() = process appInfo

1We use OCaml syntax for all code examples because of its prevalence in error localization literature.

Authors’ addresses: Ishan Bhanuka, HKUST, Hong Kong, China; Lionel Parreaux, HKUST, Hong Kong, China; David
Binder, University of Tübingen, Tübingen, Germany; Jonathan Immanuel Brachthäuser, University of Tübingen, Tübingen,
Germany.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART237
https://doi.org/10.1145/3622812

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

One central idea!

We read as:

 "A value of type flows into a

 position where a is expected"

σ <: τ
σ

τ

16

Classify Constraint Solving Errors

17

Level-0 Error

18

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-0 Error

18

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-1 Error

19

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-1 Error

19

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-1 Error

20

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-1 Error

20

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-2 Error

21

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-2 Error

21

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Level-n Errors

22

Ge!ing into the Flow 237:7

let x = 2;

let y = if x then true else false;
Int !! Bool

(a) Program with Level-0 error.

let f x = (not x, x + 1); !!

Int

Bool

let x = 2

let y = if true then x else "x"

Int

Str

!"

(b) Two programs with di"erent Level-1 errors.

let g x = (not x

, if true then x else 5)

!!

Int

Bool

"ret

(c) Program with Level-2 error.
Fig. 3. Examples of faulty programs and their corresponding constraint graphs.

De!nition 2.1. In a Level-# uni!cation error, the derivation of the contradiction has the form
of a chain of subtyping constraints $ <:> . . . <:> $ ′ (with $ ≠ $ ′ and <:> denoting either <: or
:>), where the direction of the subtyping constraints changes # times. Each change of direction
corresponds to a reversal of the data "ow which has to be explained to the user. While the rule
of symmetry allows HM type inference algorithms to ignore this information about data "ow,
retaining it is important to properly explain the cause of the type error.

To see why this classi!cation is useful, in the remainder of this section, we will consider concrete
examples containing errors of various levels in Figure 3 and the corresponding error messages that
we generate.

2.2.1 Level-0 Errors. The snippet in Figure 3a contains a Level-0 error. In this example, we have to
introduce one uni!cation variable !! for the let-bound program variable % , and two constraints
Int <: !! and !! <: Bool. The !rst constraint expresses that the type Int, introduced by the literal 2,
"ows into the variable % , while the second constraint expresses that the type of the variable % "ows
into the condition of the if-then-else expression which expects a boolean. These constraints are
presented in the corresponding graph as arrows, with the direction of the arrow corresponding to
the "ow of data through the program. From these two constraints we can deduce the inconsistency
Int <: Bool without having to reverse the data "ow in the constraints. This means that we can
directly explain the error as the "ow from one type to the other as shown in Figure 4. Level-0 errors
allow for a good textual explanation in error messages, since we can point to a location in the
program where a value of a certain type was introduced, follow it through intermediate bindings
and point to a position in the code where a di#erent type was expected. Programs containing such
Level-0 errors should always be rejected by a typechecker, since executing such programs would
result in type mismatch errors at runtime (i.e., non-value terms getting stuck and not reducing
further). Such programs are therefore rejected by both systems which support subtyping and
systems which do not.

2.2.2 Level-1 Errors. In Figure 3b we have two snippets which both exhibit Level-1 errors. In the
!rst of these snippets we have an if-then-else expression with incompatible cases for the if and else

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Explaining Type Errors With Data Flow

23

237:8 Bhanuka, Parreaux, Binder, and Brachthäuser

HMℓ

[ERROR] Type `int` does not match `bool `

! (int) comes from

| - l.1 let x = 2;

! ^

! (bool) comes from

- l.2 let y x = if x then true else false

^

Fig. 4. Level-0 error.

HMℓ

[ERROR] Type `int` does not match `string `

(int) ---> (?a) <--- (string)

! (int) comes from

| - l.1 let x = 2

| ^

| - l.2 let y = if true then x else "x"

! ^

! (?a) is assumed here

" - l.2 let y = if true then x else "x"

| ^^^^^^^^^^^^^^^^^^^^^^^

! (string) comes from

- l.2 let y = if true then x else "x"

^^^

Fig. 5. Level-1 “confluence” error with convergent flows

branch. During constraint generation we would generate a uni!cation variable !ret for the return
type of the if-then-else expression, and two constraints: The constraint Int <: !ret for the if branch
and the constraint Str <: !ret for the else branch. But taken together, these constraints are only
contradictory if we reverse the data "ow once in the chain Int <: !ret :> Str. Figure 5 shows the
error message.

In a system with subtyping and union and intersection types it would be possible to assign the
type Int! Str to the expression. This shows that it is not strictly necessary to reject this expression,
since the evaluation of this expression cannot lead to type unsoundness in itself, as long as its
context can handle both an integer and a string.
The second example in Figure 3b exhibits a di#erent Level-1 error. Here we have to generate a

uni!cation variable !! for the lambda-bound variable " , and two constraints for the two di#erent
uses of " in either side of the tuple. The error is presented in Figure 6. A system with support for
subtyping could assign the type (Int " Bool) → (Bool, Int) to the expression, i.e., a function which
can only be called with a value which can act as both an integer and a boolean.

2.2.3 Level-2 Errors. If we combine the two snippets from Figure 3b we obtain the example from
Figure 3c which exhibits a Level-2 error. Here two uni!cation variables, !! and #ret have to be
generated, together with three constraints, and we have to change the direction of data "ow twice

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Keeping Track of Data Flow in
Constraints

24

Terms & Types
Annotate terms with locations

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ordinary Term Language

25

Terms & Types
Annotate terms with locations

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ordinary Term Language

Annotated with locations

25

Terms & Types
Annotate types with provenances

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ordinary Types

26

Terms & Types
Annotate types with provenances

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ordinary Types Annotated with Provenances

26

Generating and Solving Constraints
Two Judgement Forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:14 Bhanuka, Parreaux, Binder, and Brachthäuser

C�E���� If the function sub returns with an error, the returned f 0 is populated with err? elements
containing the provenance chains ? corresponding to the error.

f p cons(&)� p f

C�C����
reset(&) 2 �

f p cons(&)� p f

C�R���
reset(g0) = reset(g1)
f p cons(g0 <: g1)� p f

C�V���LR
add-ub(f0,U,U 0?0 · ?1) = f1

add-lb(f1,U 0, ?1 · U?0) = f2 f2 p cons([gU <: U 0?1 | g 0U 2 lbs(f0,U)])� [reset(U<:U 0) p f3

f0 p cons(U?0 <: U 0?1)� p f3

C�V���L
add-ub(f0,U, g?0 · ?1) = f1 f1 p cons([g 0 <: g?1 | g 0 2 lbs(f0,U)])� [reset(U<:g) p f2

f0 p cons(U?0 <: g?1)� p f2

C�V���R
add-lb(f0,U, ?0 · g?1) = f1 f1 p cons([g?0 <: g 0 | g 0 2 ubs(f0,U)])� [reset(g<:U) p f1

f0 p cons(g?0 <: U?1)� p f2

C�S��
sub(&) = & f0 p cons(&) p f1

f0 p cons(&) p f1

C�E����
sub(&) = err?

f p cons(&) p f0

f p cons(&)� p f

C�N��

f p cons(;) p f

C�C���
f0 p cons(&) p f1 f1 p cons(&) p f2

f0 p cons(& :: &) p f2
Fig. 4. Constraint solving algorithm.

3.3.3 Computation of Subconstraints. The computation of subconstraints is de�ned in Figure 5.
The function sub(&) takes a constraint & as input, and either computes a new list of constraints to
be solved, or otherwise returns an error err? containing a provenance if the constraint cannot be
solved. We return new subconstraints if the types in the constraint are either both function types,
both product types or both sum types. In that case, we also have to recombine the provenances of
the types which are involved in the constraint, in order to track how a data �ow can be tracked
through a constructor. This is where the additional provenances which we introduced, but didn’t
explain, in Section 3.2 come into play. We write [?]�! and [?]�' where the L and R indicate if the
provenance comes from the left or right hand side of a constraint on a constructor type �. We
use the notation g?0 · ?1 and ?0 · g?1 as a shorthand for g?0 ·?1 . In every other case, that is, if the
outermost types of the two sides of a subtyping constraint are not identical, the constraint is not
solvable.
When we compute the subconstraints of two function types, we use the function rev(?) on

provenances which yields a type provenance with the same contents, but in reverse order. Reversal
applies recursively, meaning that it also reverses the order of provenances nested inside constructors

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

27

Generating and Solving Constraints
Two Judgement Forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:14 Bhanuka, Parreaux, Binder, and Brachthäuser

C�E���� If the function sub returns with an error, the returned f 0 is populated with err? elements
containing the provenance chains ? corresponding to the error.

f p cons(&)� p f

C�C����
reset(&) 2 �

f p cons(&)� p f

C�R���
reset(g0) = reset(g1)
f p cons(g0 <: g1)� p f

C�V���LR
add-ub(f0,U,U 0?0 · ?1) = f1

add-lb(f1,U 0, ?1 · U?0) = f2 f2 p cons([gU <: U 0?1 | g 0U 2 lbs(f0,U)])� [reset(U<:U 0) p f3

f0 p cons(U?0 <: U 0?1)� p f3

C�V���L
add-ub(f0,U, g?0 · ?1) = f1 f1 p cons([g 0 <: g?1 | g 0 2 lbs(f0,U)])� [reset(U<:g) p f2

f0 p cons(U?0 <: g?1)� p f2

C�V���R
add-lb(f0,U, ?0 · g?1) = f1 f1 p cons([g?0 <: g 0 | g 0 2 ubs(f0,U)])� [reset(g<:U) p f1

f0 p cons(g?0 <: U?1)� p f2

C�S��
sub(&) = & f0 p cons(&) p f1

f0 p cons(&) p f1

C�E����
sub(&) = err?

f p cons(&) p f0

f p cons(&)� p f

C�N��

f p cons(;) p f

C�C���
f0 p cons(&) p f1 f1 p cons(&) p f2

f0 p cons(& :: &) p f2
Fig. 4. Constraint solving algorithm.

3.3.3 Computation of Subconstraints. The computation of subconstraints is de�ned in Figure 5.
The function sub(&) takes a constraint & as input, and either computes a new list of constraints to
be solved, or otherwise returns an error err? containing a provenance if the constraint cannot be
solved. We return new subconstraints if the types in the constraint are either both function types,
both product types or both sum types. In that case, we also have to recombine the provenances of
the types which are involved in the constraint, in order to track how a data �ow can be tracked
through a constructor. This is where the additional provenances which we introduced, but didn’t
explain, in Section 3.2 come into play. We write [?]�! and [?]�' where the L and R indicate if the
provenance comes from the left or right hand side of a constraint on a constructor type �. We
use the notation g?0 · ?1 and ?0 · g?1 as a shorthand for g?0 ·?1 . In every other case, that is, if the
outermost types of the two sides of a subtyping constraint are not identical, the constraint is not
solvable.
When we compute the subconstraints of two function types, we use the function rev(?) on

provenances which yields a type provenance with the same contents, but in reverse order. Reversal
applies recursively, meaning that it also reverses the order of provenances nested inside constructors

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Input:

27

Generating and Solving Constraints
Two Judgement Forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:14 Bhanuka, Parreaux, Binder, and Brachthäuser

C�E���� If the function sub returns with an error, the returned f 0 is populated with err? elements
containing the provenance chains ? corresponding to the error.

f p cons(&)� p f

C�C����
reset(&) 2 �

f p cons(&)� p f

C�R���
reset(g0) = reset(g1)
f p cons(g0 <: g1)� p f

C�V���LR
add-ub(f0,U,U 0?0 · ?1) = f1

add-lb(f1,U 0, ?1 · U?0) = f2 f2 p cons([gU <: U 0?1 | g 0U 2 lbs(f0,U)])� [reset(U<:U 0) p f3

f0 p cons(U?0 <: U 0?1)� p f3

C�V���L
add-ub(f0,U, g?0 · ?1) = f1 f1 p cons([g 0 <: g?1 | g 0 2 lbs(f0,U)])� [reset(U<:g) p f2

f0 p cons(U?0 <: g?1)� p f2

C�V���R
add-lb(f0,U, ?0 · g?1) = f1 f1 p cons([g?0 <: g 0 | g 0 2 ubs(f0,U)])� [reset(g<:U) p f1

f0 p cons(g?0 <: U?1)� p f2

C�S��
sub(&) = & f0 p cons(&) p f1

f0 p cons(&) p f1

C�E����
sub(&) = err?

f p cons(&) p f0

f p cons(&)� p f

C�N��

f p cons(;) p f

C�C���
f0 p cons(&) p f1 f1 p cons(&) p f2

f0 p cons(& :: &) p f2
Fig. 4. Constraint solving algorithm.

3.3.3 Computation of Subconstraints. The computation of subconstraints is de�ned in Figure 5.
The function sub(&) takes a constraint & as input, and either computes a new list of constraints to
be solved, or otherwise returns an error err? containing a provenance if the constraint cannot be
solved. We return new subconstraints if the types in the constraint are either both function types,
both product types or both sum types. In that case, we also have to recombine the provenances of
the types which are involved in the constraint, in order to track how a data �ow can be tracked
through a constructor. This is where the additional provenances which we introduced, but didn’t
explain, in Section 3.2 come into play. We write [?]�! and [?]�' where the L and R indicate if the
provenance comes from the left or right hand side of a constraint on a constructor type �. We
use the notation g?0 · ?1 and ?0 · g?1 as a shorthand for g?0 ·?1 . In every other case, that is, if the
outermost types of the two sides of a subtyping constraint are not identical, the constraint is not
solvable.
When we compute the subconstraints of two function types, we use the function rev(?) on

provenances which yields a type provenance with the same contents, but in reverse order. Reversal
applies recursively, meaning that it also reverses the order of provenances nested inside constructors

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Input:
Output:

27

Generating and Solving Constraints
Two Judgement Forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

237:14 Bhanuka, Parreaux, Binder, and Brachthäuser

C�E���� If the function sub returns with an error, the returned f 0 is populated with err? elements
containing the provenance chains ? corresponding to the error.

f p cons(&)� p f

C�C����
reset(&) 2 �

f p cons(&)� p f

C�R���
reset(g0) = reset(g1)
f p cons(g0 <: g1)� p f

C�V���LR
add-ub(f0,U,U 0?0 · ?1) = f1

add-lb(f1,U 0, ?1 · U?0) = f2 f2 p cons([gU <: U 0?1 | g 0U 2 lbs(f0,U)])� [reset(U<:U 0) p f3

f0 p cons(U?0 <: U 0?1)� p f3

C�V���L
add-ub(f0,U, g?0 · ?1) = f1 f1 p cons([g 0 <: g?1 | g 0 2 lbs(f0,U)])� [reset(U<:g) p f2

f0 p cons(U?0 <: g?1)� p f2

C�V���R
add-lb(f0,U, ?0 · g?1) = f1 f1 p cons([g?0 <: g 0 | g 0 2 ubs(f0,U)])� [reset(g<:U) p f1

f0 p cons(g?0 <: U?1)� p f2

C�S��
sub(&) = & f0 p cons(&) p f1

f0 p cons(&) p f1

C�E����
sub(&) = err?

f p cons(&) p f0

f p cons(&)� p f

C�N��

f p cons(;) p f

C�C���
f0 p cons(&) p f1 f1 p cons(&) p f2

f0 p cons(& :: &) p f2
Fig. 4. Constraint solving algorithm.

3.3.3 Computation of Subconstraints. The computation of subconstraints is de�ned in Figure 5.
The function sub(&) takes a constraint & as input, and either computes a new list of constraints to
be solved, or otherwise returns an error err? containing a provenance if the constraint cannot be
solved. We return new subconstraints if the types in the constraint are either both function types,
both product types or both sum types. In that case, we also have to recombine the provenances of
the types which are involved in the constraint, in order to track how a data �ow can be tracked
through a constructor. This is where the additional provenances which we introduced, but didn’t
explain, in Section 3.2 come into play. We write [?]�! and [?]�' where the L and R indicate if the
provenance comes from the left or right hand side of a constraint on a constructor type �. We
use the notation g?0 · ?1 and ?0 · g?1 as a shorthand for g?0 ·?1 . In every other case, that is, if the
outermost types of the two sides of a subtyping constraint are not identical, the constraint is not
solvable.
When we compute the subconstraints of two function types, we use the function rev(?) on

provenances which yields a type provenance with the same contents, but in reverse order. Reversal
applies recursively, meaning that it also reverses the order of provenances nested inside constructors

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Ge�ing into the Flow 237:11

3.2 Types and Provenances
Where terms are annotated with locations, types are annotated with provenances (de�ned in
Figure 2). These provenances ? explain why a certain type is used at a speci�c point in the program,
and they are recorded and recombined during the type inference process. Provenances are also
used to report errors; in that case they explain the �ow of information through the program that led
to the mismatch of two types. A provenance records a linear path through the program, so we have
an operation · to concatenate two paths, and its unit n standing for the empty path. Provenance
concatenation is taken to be an associative operation where the absent provenance n is taken to be
the empty element. Therefore, for example, (?0 · ?1) · ?2 is the same as ?0 · (?1 · ?2) and is simply
written ?0 · ?1 · ?2. Similarly, n · ?0 · n · ?1 · n , is the same as ?0 · ?1. We also use locations ✓ in
provenances, to record speci�c points in the �ow of information through the program. We will
introduce and motivate the remaining syntactic forms of provenances in Section 3.3.3, where they
are used in the constraint solving process.

Syntax of Types. The type forms are standard. We have type variables U , the unit type 1, and
primitive types Int and Bool. We have three binary type constructors: the function type !, the
product type ⌦ and the sum type �. As mentioned above, these are all annotated with provenances
? . Just as with terms, we will sometimes omit these provenances in examples and explanations. In
order to show how the di�erent parts of an annotated type correspond to di�erent parts of the
information �ow, we consider a very simple example.

Example 3.1. The inferred type of the term [5✓1 , unit✓2]✓3 is Int✓1 ⌦✓3 1✓2 .

The above example shows that in the inferred type, the top-level provenance ✓3 only contains
the information of the �ow explaining the outermost type constructor _ ⌦ _. It does not contain
the information about the provenance of its arguments. These provenances are annotated in the
arguments to _ ⌦ _, namely Int✓1 and 1✓2 .

Location ✓ F program location

Term 4 F G ✓ | unit✓ | = ✓ | true✓ | false✓ | (if 4 then 4 else 4)✓ | 4 +✓ 4 | (_G ✓ . 4)✓ | (4 4)✓

| [4, 4]✓ | c1 (4)✓ | c2 (4)✓ |]1 (4)✓ |]2 (4)✓ | case 4 of {]1 (G ✓)) 4;]2 (G ✓)) 4 }✓

Provenance ? F ? · ? | n | ✓ | [?]!! | [?]!' | [?]�! | [?]�' | [?]⌦! | [?]⌦'
Type g, X F U? | 1? | Int? | Bool? | g !? g | g �? g | g ⌦? g

Constraint & F g <: g

Context � F n | � · (G : U)
State f F { bounds : g <: U <: g, errors : ? }

Fig. 2. Syntax of terms and types.

3.3 Type Inference
Our type inference algorithm is an extension of a particular implementation of algebraic subtyping,
due to Parreaux [2020]. For readers who want to grasp the full extent of the algebraic subtyping
technique and the associated proofs of correctness, we suggest referring to the relevant literature
[Dolan 2017; Dolan and Mycroft 2017]. Note that locations and provenances do not a�ect type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Input:
Output:

Collect bounds for unification variables
27

Tracking Provenance
Dataflows begin in introduction forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

28

Tracking Provenance
Dataflows begin in introduction forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Dataflow starts at integer literal

28

Tracking Provenance
Dataflows end in elimination forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

29

Tracking Provenance
Dataflows end in elimination forms

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Dataflow ends at addition

29

Tracking Provenance
Provenance passes through some constructs

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

30

Tracking Provenance
Provenance passes through some constructs

Ge�ing into the Flow 237:13

f p � ` 4 : g p f

T�U���

f p � ` unit✓ : 1✓ p f

T�L��

f p � ` = ✓ : Int✓ p f

T�P���
f0 p � ` 40 : g0 p f1 f1 p cons(g0 <: Int✓) p f2
f2 p � ` 41 : g1 p f3 f3 p cons(g1 <: Int✓) p f4

f0 p � ` 40 +✓ 41 : Int✓ p f4

T�V��
f0 p �(G) = g p f1

f0 p � ` G ✓ : g ✓ p f1
G 2 dom(�)

T�L��
U fresh f0 p � · (G : U) ` 4 : g p f1
f0 p � ` (_G ✓G . 4)✓ : U✓G !✓ g p f1

T�A��
U fresh f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2 f2 p cons(g0 <: g1 ! U✓) p f3

f0 p � ` (40 41)✓ : U✓ p f3

T�T���

f p � ` true✓ : Bool✓ p f

T�F����

f p � ` false✓ : Bool✓ p f

T�I�T���E���
U fresh

f0 p � ` 41 : g1 p f1 f1 p � ` 42 : g2 p f2 f2 p � ` 43 : g3 p f3
f3 p cons(g1 <: Bool✓) p f4 f4 p cons(g2 <: U✓) p f5 f5 p cons(g3 <: U✓) p f6

f0 p � ` (if 41 then 42 else 43)✓ : U✓ p f6

T�P���
f0 p � ` 40 : g0 p f1 f1 p � ` 41 : g1 p f2

f0 p � ` [40, 41]✓ : g0 ⌦✓ g1 p f2

T�L����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: U✓ ⌦✓ Vn) p f2

f0 p � ` c1 (4)✓ : U✓ p f2

T�R����
f0 p � ` 4 : g p f1 U, V fresh
f1 p cons(g <: Vn ⌦✓ U✓) p f2

f0 p � ` c2 (4)✓ : U✓ p f2

T�L���
U fresh f0 p � ` 4 : g p f1
f0 p � `]1 (4)✓ : g �✓ Un p f1

T�R���
U fresh f0 p � ` 4 : g p f1
f0 p � `]2 (4)✓ : Un �✓ g p f1

T�C���
U, V,W fresh

f0 p � ` 40 : g0 p f1 f1 p � · (G ✓G : U✓G) ` 41 : g1 p f2 f2 p � · (~✓~ : V✓~) ` 42 : g2 p f3
f3 p cons(g0 <: U✓G �✓ V✓~) p f4 f4 p cons(g1 <: W ✓) p f5 f5 p cons(g2 <: W ✓) p f6

f0 p � ` case 40 of {]1 (G ✓G)) 41;]2 (~✓~)) 42 }✓ : W ✓ p f6
Fig. 3. Algorithmic type inference rules.

C�S�� When the constraint we have to solve is complex, i.e. neither of the two types is a uni�cation
variable, then we invoke the function sub in order to compute the subconstraints of the
constraint. If this function returns with a set of new constraints, we solve them in turn.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

Dataflow passes through if-then-else

30

Empirical Evaluation

31

Empirical Results
Location and UnderstandabilityGe�ing into the Flow 237:21

Q2: “How much did the error message help you to locate the problem?”
easy1 easy2 easy3 medium1 medium2 medium3 medium4 hard1 hard3

A B C A B C A B C A B C A B C A B C A B C A B C A B C0%

25%

50%

75%

100%

Q3: “How much did the error message help you to understand the problem?”
easy1 easy2 easy3 medium1 medium2 medium3 medium4 hard1 hard3

A B C A B C A B C A B C A B C A B C A B C A B C A B C0%

25%

50%

75%

100%

Fig. 9. Participants answering the respective question on a five-point Likert scale from “Not helpful” (top,
red) to “Very helpful” (bo�om, blue). We compare conditions HM✓ (A), OCaml (B), and Helium (C).

5.2 Participants
We shared the online survey with professionals and researchers by posting it on relevant online
platforms (such as Reddit and Twitter). Participants were asked to self-estimate their experience in
programming in general, functional programming, statically typed programming, and programming
in OCaml on a 5-point Likert scale [Feigenspan et al. 2012]. From a total of 455 participants, 318
started and 119 concluded the survey (40 HM✓ , 39 OCaml, 40 Helium). We manually excluded two
participants (both in the OCaml condition) since they visibly did not invest enough e�ort to answer
the questions. Of the 117 non-excluded participants, 70 assigned themselves an expertise � 4 for
“functional programming” or “OCaml”. Only 14 participants did assign themselves an expertise  3
for all categories.

5.3 Evaluation
The study sets out to analyse whether the error-message condition (HM✓ , OCaml, or Helium) signif-
icantly in�uences a) the perceived usefulness of the error messages, as well as b) the understanding
of the programming error. We �rst discuss the evaluation of perceived usefulness (Q2 and Q3)
before discussing the evaluation of the open question (Q1).

After data collection, we realized a mistake made while hand-translating Helium error message
for hard2 back to OCaml types. It left a Haskell formatted list type, whichmight have been confusing
to participants and led to poor responses. Thus we exclude example hard2 from our evaluation.

5.3.1 Perceived Usefulness (Q2 and Q3). For each of the ten individual example programs, and each
of the three conditions (A), (B), and (C), Figure 9 presents the results for the perceived usefulness
reported by participants. The �ve-point Likert-scaled data is visualized as stacked bar charts,
where the lowest (dark-blue) component corresponds to the answer “Very helpful”, and the highest
(dark-red) component corresponds to the answer “Not helpful”.

Locating the problem (Q2). Performing a Kruskal-Wallis rank sum test [Kruskal and Wallis 1952]
for each of the ten tasks, we can �nd signi�cant di�erences for easy2 (? = 0.0119, j2 = 8.87), easy3
(? = 0.0025, j2 = 11.96), medium2 (? = 0.0067, j2 = 10.015). Table 1 lists the full results for all
performed Kruskal-Wallis rank sum tests. All participants correctly described the error for program
easy1.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 237. Publication date: October 2023.

32

Ongoing and Future Work

33

Using Data Flow as an Explanatory Device
Useful for more than just typechecking?

• Our hypothesis is that (functional) programmers reason about programs using
data flow.

• If that is the case, then data flow is a good explanatory device when
explaining errors.

• We showed how to do it for type inference, but what about: Effect systems,
type classes, linear type systems, region based memory management.

34

Time for your questions!

35

