Grokking the Sequent Calculus

David Binder, Marco Tzschentke, Marius Miuller, Klaus Ostermann University of Tubingen

Natural Peduction Sequent Calculus

p = x| cocase{ap(x,a) = s} | ua.s
Terms t=X‘/IXt‘tt C;:a‘ap(p,c)‘ﬂx.s

s:=(p|c) J
uii-caleulus (Curien & Herbelin, 2000)

Logic D 6 ¢ L, ¢k 1, A DL F 6. A Tathb- A
1 (0 I'E¢—14Y,A ', T2, 0 = = Ay, Ay

Fun Core

. p = x| cocase{ap(x,a) = s} | ua.s
compile

ti=x|Ax.t|tt c:=alap(p,c)|fix.s

+ Let Bindings s=wle

+ Pata & Codata Types
+ (Control Effects

+ Arithwmetic Primitives
+ Toplevel Definitions

Core

p = x| cocase{ap(x,a) = s} | ua.s

Producer / Proof
c:=alap(p,c)|px.s

Consumer / Refutation / Continvation
s=(p|c)

Statement / Command / Contradiction

1. Arithmetic Expressions

2. Let Bindings
3. Control Effects

1. Arithmetic Expressions

Fun Core

compile

t:=x|"n|ifz(z, 1, 1) p:=x|"n"|pua.s

cC .=
s :=ifz(p;s,s) | (p | ¢)
[x]| :=x Terwms are translated to producers!
|[I_n_|]] — I_n_l

I[ifZ(tl, [0, tg)]] = ,LlO(.ifZ(ﬂtl]], <|[t2]] ‘ 0(), <|[t3]] ‘ 0())

2. Let Bindings

2. Let Bindings

Fun Core

‘ compile
f:=...|letx=riInt

| fix . Exactly dual to p

q
1

=
>
e

)
|

llet x =t in ty| = pa.(|t1]| | px.(|t2]| | @)) (a fresh)

3. Control Effects

3. Control Effects

Fun Core
compile N
t:=... | label a {1} | goto(t;a) =i p =
- : |
Siwmilar to call/ce & let/cc €= Nothing new!
S .=
[label o {t}] := pa.([t] |) Capture the continvation of

[goto(t;)] == pB.([t] | «) (B fresh) Throw away continvation f!

10

def mult(/) := case [of {Nil = 1, Cons(x, xs) = x * mult(xs) }

12

def mult(]) := case [of { Nil = 1, Cons(x, xs) = x = mult(xs) }

" —— Add label here
def mult(/) := label o { mult’(/; o) }

def mult’(/; @) := case [of { Nil = 1, Cons(x, xs) = ifz(x, goto(0;), x * mult’(xs; a)) }

Jump with 0 to the label here —— A

13

def mult(/) := label a { mult’(/; @) }
def mult’(/;) := case [of { Nil = 1, Cons(x, xs) = ifz(x, goto(0; @), x * mult’(xs; a)) }

v/\ Continvation arqument

def mult(/; @) := mult’([; o, @) o | | |
def mult’ (I a¥g) .= Short-circuiting continvation: a Normal function return: f

(I | case {Nil = (1 | B), Cons(x, xs) = ifz(x, (0 |), mult’(xs; a, fiz. * (x,z; f)))})

Jump to o with 0 \/A /

Recursive call

14

What else will you find?

Typing Rules

x P rerTl VAR, o rel VAR,
'Fx:Pdr FFa: ™1
Producer Typing — A e Consuwmer Typing
,a ™ ks CxPirrs .
['Fopas P47 [Fjix.s ™7
Fl—pzprdf I‘I—C:CHS’TCUT
[Hple)

Statewment Typing —— A

16

Operational Semantics
v/\ From statement to statement
ifz(" 07, s1,59) > 854

ifz("n',s,s9)>s, (ifn #0)

What about nested computation / congruence?
F (ifz(p, s1,s0)) = (F(p) | px.ifz(x, sy, $2)) (p not a value), (x fresh)

A¥ Focusing to explicitly sequentialize computation

Approximately like an ANF-fransformation
No need for evaluation contexts

17

Insights!

» Let-Bindings and Control Operators are dual
e Pattern matching on Data and copattern matching on Codata are dual Bonus Slide
« Commutative conversions (case-of-case) are p-reductions Bonus Slide

» Duality of call-by-value and call-by-name

18

One
Takeaway!

Expressive Power of CPS
without
Complicated CPS-Types

Thank you for listening

e Marco Tzschentke
e Marius Muller

e Klaus Ostermann

agrokking-sc.qgithub.io/grokking-sc/

21

Grokking the Sequent Calculus (Functig

DAVID BINDER, University of Tiibingen, Germany
MARCO TZSCHENTKE, University of Tiibingen;
MARIUS MULLER, University of Tiibingen, Germany
KLAUS OSTERMANN, University of Tiibingen, Ge

ymmetric alternative to natural de-
the sequent calculus and a great foundation for
compiler intermediate languages due to its fir presentation of evaluation contexts. Unfortunately,
only experts of the sequent calculus can appr ts beauty. To remedy this, we present the first intro-
duction to the Apji-calculus which is not directed @t type theorists or logicians but at compiler hackers and
programming-language enthusiasts. We do this by writing a compiler from a small but interesting surface
language to the Apji-calculus as a compiler intermediate language.

The sequent calculus is a proof system which was
duction. The Apuji-calculus is a term assignment

CCS Concepts: » Theory of computation — Lambda calculus; - Software and its engineering — Com-
pilers; Control structures.

Additional Key Words and Phrases: Intermediate representations, continuations, codata types, control effects

ACM Reference Format:

David Binder, Marco Tzschentke, Marius Miiller, and Klaus Ostermann. 2024. Grokking the Sequent Calculus
(Functional Pearl). Proc. ACM Program. Lang. 8, ICFP, Article 250 (August 2024), 31 pages. https://doi.org/10.
1145/3674639

1 Introduction
Suppose you have just implemented your own small functional language. To test it, you write the
following function which multiplies all the numbers contained in a list:

def mult(]) := case [of {Nil = 1, Cons(x, xs) = x * mult(xs) }

What bugs you about this implementation is that you know an obvious optimization: The function
should directly return zero if it encounters a zero in the list. There are many ways to achieve this,
but you choose to extend your language with labeled expressions and a goto instruction. This
allows you to write the optimized version:

def mult(]) := label « { mult’([;) }
def mult’(I; @) := case [of { Nil = 1, Cons(x, xs) = ifz(x, goto(0; @), x * mult’(xs; @)) }

You used label a {mult’(/;)} to introduce a label a around the call to the helper function mult’
which takes this label as an additional argument (we use ; to separate the label argument from
the other arguments), and goto(0;) to jump to this label @ with the expression 0 in the recursive

Authors’ Contact Information: David Binder, Department of Computer Science, University of Tiibingen, Tiibingen, Ger-
many, david.binder@uni-tuebingen.de; Marco Tzschentke, Department of Computer Science, University of Tiibingen,
Tibingen, Germany, marco.tzschentke@uni-tuebingen.de; Marius Miiller, Department of Computer Science, University
of Tubingen, Tiibingen, Germany, mari.mueller@uni-tuebingen.de; Klaus Ostermann, Department of Computer Science,
University of Tiubingen, Tibingen, Germany, klaus.ostermann@uni-tuebingen.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART250
https://doi.org/10.1145/3674639

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 250. Publication date: August 2024.

http://grokking-sc.github.io/grokking-sc/

Bonus Slides

Commutative Conversions

Case-of-case

case (case e; of {T = e5;F = e3}) of {T = ey;F = e5}

case ¢; of {T = case e; of {T = e4;F = e5};F = case e3 of {T = e4;F = e5}}

pa(pplei] | case {T = ([e2] | f);F = (es | p)}) | case {T = ([es] | @), F = ([es] | @) })

pa.([e1])|case {
T = (puplez) | case {T = ([es] | f).F = (les] | H}) | @)

F= (up.(les] | case {T = ([es] |), F = ([es] |)}) |) })

Duality of Data and Codata Types

Definition 2.5 (Algebraic Data and Codata Types).

[K(t1,...,tn)]
[case t of {K;(X;;) = t;}]
[t.D(ty,...,tn)]

[cocase {D;(x;;) = t;}]

Fun Core
t ==...|K(t) | caset of {K(x) = t} p =...|K(p;c) | cocase {D(x;a) = s}
| t.D(t) | cocase {D(x) = t} ¢c u=...|D(p;c) | case {K(x;2) = s}
t :=...|K(t) | cocase {D(x) = t} p :=...|K(p;c) | cocase {D(x;a) = s}
¢ ==...|D(p;c) | case {K(x;a) = s}
case K(t) of {K(X) = t,...} > t[t/x] (K(p;¢) | case {K(x;) = s,...}) > s[p/x;¢/a
cocase {D(X) = t,...}.D(t) » t[t/xX] (cocase {D(x;a) = s,...} | D(p;¢)) > s[p/x;¢/a

= K([t:], ..., [ta])
= pa.([t] | case {K;(xi;) = ([ti] | @) }) (a fresh)
= pa.{|t] | D([t1],..., [ta]; @)) (a fresh)
= cocase {D;(x; ;i) = ([ti] | @)} (a; fresh)

24

