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t := x ∣ ⌜n⌝ ∣ ifz(t, t, t) p := x ∣ ⌜n⌝ ∣ μα . s

c := α

s := ifz(p; s, s) ∣ ⟨p ∣ c⟩
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compile
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This paper is accompanied by a Haskell implementation which we also make available as an
interactive website (cf. Figure 1). You can run the examples presented in this paper in the online
evaluator.

2 Translating to Sequent Calculus
In this section, we introduce Fun, an expression-oriented functional programming language, to-
getherwith its translation into the sequent-calculus-based intermediate languageCore.We present
both languages and the translation function !−" in multiple steps, starting with arithmetic ex-
pressions and adding more features in later subsections. We postpone the typing rules for both
languages until Section 4.

2.1 Arithmetic Expressions
We begin with arithmetic expressions which consist of variables, integer literals, binary operators
and ifz, a conditional expression which checks whether its first argument is equal to zero. The
syntax of arithmetic expressions for Fun and Core is given in Definition 2.1.

Definition 2.1 (Arithmetic Expressions).
𝑥,𝑦, 𝑧, . . . ∈ VaRiables ⋆,𝛼, 𝛽,𝛾, . . . ∈ CovaRiables ⊙ ∈ {∗, +,−}

Fun

𝑡 ! 𝑥 | "𝑛# | 𝑡 ⊙ 𝑡 | ifz(𝑡, 𝑡, 𝑡)

Core

𝑝 ! 𝑥 | "𝑛# | 𝜇𝛼 .𝑠 Producer
𝑐 ! 𝛼 Consumer
𝑠 ! ⊙(𝑝, 𝑝; 𝑐) | ifz(𝑝, 𝑠, 𝑠) | ⟨𝑝 | 𝑐⟩ Statement

!𝑥" ≔ 𝑥 !𝑡1 ⊙ 𝑡2" ≔ 𝜇𝛼 . ⊙ (!𝑡1", !𝑡2";𝛼) (𝛼 fresh)
!"𝑛#" ≔ "𝑛# !ifz(𝑡1, 𝑡2, 𝑡3)" ≔ 𝜇𝛼 .ifz(!𝑡1", ⟨!𝑡2" | 𝛼⟩, ⟨!𝑡3" | 𝛼⟩) (𝛼 fresh)

In Fun there is only one syntactic category: terms 𝑡 .These terms can either be variables 𝑥 , literals
"𝑛#, binary operators 𝑡 + 𝑡 , 𝑡 ∗ 𝑡 and 𝑡 − 𝑡 , or a conditional ifz(𝑡, 𝑡0, 𝑡1). This conditional evaluates
to 𝑡0 if 𝑡 evaluates to "0#, or to 𝑡1 otherwise. In contrast to this single category, Core uses three
different syntactic categories: producers 𝑝 , consumers 𝑐 and statements 𝑠 . These categories are
directly inherited from the 𝜆𝜇𝜇̃-calculus, and it is important to understand their differences:

Producers All constructs in Core which construct or produce an element of some type belong to
the syntactic category of producers. In other words, producers correspond to “introduction
forms” or “proof terms”, and every term of the language Fun is translated to a producer in
Core.

Consumers Consumers are probably less intuitive than producers since they do not correspond
directly to any term of the language Fun. The basic idea is that if some consumer 𝑐 has type
𝜏 , then 𝑐 consumes or destructs a producer of type 𝜏 . If you have encountered evaluation
contexts or continuations before, then it is helpful to think of consumers of type 𝜏 as con-
tinuations or evaluation contexts for a producer of type 𝜏 . And if you are familiar with the
Curry-Howard correspondence, then you can think of consumers as refutations or direct
evidence that a proposition is false.
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t := … ∣ let x = t in t p := …

c := … ∣ μ̃x . s

s := …

Fun Core
compile

2. Let Bindings
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Definition 2.3 (Let-Bindings and 𝜇̃-abstractions).
Fun

𝑡 ! . . . | let 𝑥 = 𝑡 in 𝑡

let 𝑥 = 𝔱 in 𝑡 ⊲ 𝑡 [𝔱/𝑥]

Core

𝑐 ! . . . | 𝜇̃𝑥 .𝑠
𝔠 ! . . . | 𝜇̃𝑥 .𝑠

⟨𝔭 | 𝜇̃𝑥 .𝑠⟩ ⊲ 𝑠 [𝔭/𝑥]

!let 𝑥 = 𝑡1 in 𝑡2" ≔ 𝜇𝛼 .⟨!𝑡1" | 𝜇̃𝑥 .⟨!𝑡2" | 𝛼⟩⟩ (𝛼 fresh)

The let-bindings in Fun are standard and are evaluated by substituting the value 𝔱 for the vari-
able 𝑥 in the body which is a term. The analogue of a let-binding in Fun is a 𝜇̃-binding in Core
which also binds a variable, with the difference that the body of a 𝜇̃-binding is a statement. It can
easily be seen that 𝜇̃-bindings are the precise dual of 𝜇-bindings that we have already introduced.

With both 𝜇- and 𝜇̃-bindings in Corewe have to face a potential problem, namely statements of
the form ⟨𝜇𝛼 .𝑠1 | 𝜇̃𝑥 .𝑠2⟩. Such a statement is called a critical pair since it can potentially be reduced
to both 𝑠1 [𝜇̃𝑥 .𝑠2/𝛼] and 𝑠2 [𝜇𝛼 .𝑠1/𝑥] which can be a source of non-confluence. A closer inspection
of the rules shows that we avoid this pitfall and always evaluate the statement to 𝑠1 [𝜇̃𝑥 .𝑠2/𝛼].
We do not allow to reduce the statement to 𝑠2 [𝜇𝛼 .𝑠1/𝑥] since only values 𝔭 can be substituted
for variables, and 𝜇𝛼 .𝑠1 is not a value. This restriction precisely mirrors the restriction on the
evaluation of let-bindings in Fun. In other words, we use call-by-value evaluation order. We will
address the critical pair and how it relates to different evaluation orders again in Section 5.6.

Example 2.2. Consider the term let 𝑥 = !2" ∗ !2" in 𝑥 ∗ 𝑥 whose translation into Core is
the producer 𝜇𝛼 .⟨𝜇𝛽 . ∗ (!2", !2"; 𝛽) | 𝜇̃𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | 𝛼⟩⟩.This producer contains a critical pair
which we have underlined. Because we are using call-by-value, we can observe how the following
reduction steps resolve the critical pair by evaluating the 𝜇-abstraction first.

⟨𝜇𝛽 . ∗ (!2", !2"; 𝛽) | 𝜇̃𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩⟩ ⊲ ∗(!2", !2"; 𝜇̃𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩)⊲

⟨!4" | 𝜇̃𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩⟩ ⊲ ⟨𝜇𝛾 . ∗ (!4", !4";𝛾) | ⋆⟩ ⊲ ∗(!4", !4";⋆) ⊲ ⟨!16" | ⋆⟩

We can observe that the arithmetic expression 2∗2 has been evaluated only once, which is precisely
what we expect from call-by-value.

2.3 Top-Level Definitions
We introduce recursive top-level definitions to Fun and Core for two reasons. They allow us to
write more interesting examples and they illustrate a difference in how recursive calls are handled.
The extension is specified in Definition 2.4.

Definition 2.4 (Top-Level Definitions). We assume for both languages that 𝑓 ,𝑔,ℎ, . . . ∈ Names.

Fun

𝐹 ! def 𝑓 (𝑥 ;𝛼) ≔ 𝑡 Definitions
𝑃 ! ∅ | 𝐹 , 𝑃 Programs
𝑡 ! . . . | 𝑓 (𝑡 ;𝛼) Terms

𝑓 (𝔱;𝛼) ⊲𝑡 [𝔱/𝑥,𝛼/𝛽] (if 𝑓 (𝑥 ; 𝛽) ≔ 𝑡 ∈ 𝑃)

Core

𝐹 ! def 𝑓 (𝑥 ;𝛼) ≔ 𝑠 Definitions
𝑃 ! ∅ | 𝐹 , 𝑃 Programs
𝑠 ! . . . | 𝑓 (𝑝; 𝑐) Statements

𝑓 (𝔭; 𝔠) ⊲𝑠 [𝔭/𝑥, 𝔠/𝛼] (if 𝑓 (𝑥 ;𝛼) ≔ 𝑠 ∈ 𝑃)

!def 𝑓 (𝑥 ;𝛼) ≔ 𝑡" ≔ def 𝑓 (𝑥 ;𝛼,𝛼) ≔ ⟨!𝑡" | 𝛼⟩ (𝛼 fresh)
!𝑓 (𝑡 ;𝛼)" ≔ 𝜇𝛼 .𝑓 (!𝑡";𝛼,𝛼) (𝛼 fresh)
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t := … ∣ label α {t} ∣ goto(t; α) p := …

c := …
s := …

Fun Core
compile

3. Control Effects
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Definition 2.7 (Control Operators).
𝑡 ! . . . | label 𝛼 {𝑡} | goto(𝑡 ;𝛼)

!label 𝛼 {𝑡}" ≔ 𝜇𝛼 .⟨!𝑡" | 𝛼⟩ !goto(𝑡 ;𝛼)" ≔ 𝜇𝛽 .⟨!𝑡" | 𝛼⟩ (𝛽 fresh)

A term label 𝛼 {𝑡} binds a covariable 𝛼 in the term 𝑡 and thereby provides a location to which a
goto used within 𝑡 can jump. Such a goto(𝑡 ;𝛼) takes the location 𝛼 as an argument, as well as the
term 𝑡 that should be used to continue the computation at the location where 𝛼 was bound. It is a
bit tricky to write down precisely how the evaluation of label and goto works, but the following
two rules are a good approximation, where we assume that 𝛼 does not occur free in 𝔱:

label 𝛼 {𝔱} ⊲ 𝔱 label 𝛼 {. . . goto(𝔱;𝛼) . . .} ⊲ 𝔱

The left rule says that when the labeled term 𝑡 can be evaluated to a value 𝔱 without ever using
a goto, then we can discard the surrounding label. The rule on the right says that if we do have
a goto which jumps to the label 𝛼 with a value 𝔱, then we discard everything between the label
and the goto and continue the computation with this value 𝔱. In order to make this second rule
precise, we have to make explicit what we only indicate with the ellipses separating the label from
the jump; we will do so in Section 3.

Example 2.7. In the introduction, we used the example of a fast multiplication function which
multiplies all the elements of a list and short-circuits the computation if it encounters a zero. As we
have allowed top-level definitions to pass covariables as arguments, we can nowwrite the example
of the introduction.

def mult(𝑙) ≔ label 𝛼 {mult’(𝑙 ;𝛼)}
def mult’(𝑙 ;𝛼) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, goto(0;𝛼), 𝑥 ∗mult’(𝑥𝑠 ;𝛼))}

When we translate to Core and simplify the resulting term, we get the result:

def mult(𝑙 ;𝛼) ≔ mult’(𝑙 ;𝛼,𝛼)
def mult’(𝑙 ;𝛼, 𝛽) ≔

⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ∗(𝑥, 𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾); 𝛽))}⟩

This is almost the result we have seen in the introduction. The only difference is that the recursive
call to mult’ is nested inside the multiplication. This is the same problem we have seen with nested
arithmetic operations at the end of Section 2.1 and we will address it in the next section.

The label/goto control operator we have introduced in this subsection is of course named after
the goto instructions and labels which can be found in many imperative programming languages.
Our adaption to the context of functional programming languages is similar to classical control
operators (see Section 5.3 for a more precise discussion) such as J [Landin 1965] or let/cc (also
known as escape) [Reynolds 1972]; the programming language Scala also provides the closely re-
lated boundary/break3 where a boundary marks a block of code to which the programmer can
jump with a break instruction. One central property of this control effect is that it is lexically
scoped, since the label names 𝛼 are passed around lexically and can be shadowed. This distin-
guishes them from dynamically scoped control operators like the exception mechanisms found
in many programming languages like Java or C++. (A dynamically scoped variant of our control
operator would omit the label names, and the jump in label {. . . goto(𝑡) . . .} would return to the
3See scala-lang.org/api/3.3.0/scala/util/boundary$.html.
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Throw away continuation β!
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1 Introduction
Suppose you have just implemented your own small functional language. To test it, you write the
following function which multiplies all the numbers contained in a list:
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helper function. But since your language now has control effects, you need to reconsider how
you want to compile and optimize programs. In particular, you have to decide on an appropriate
intermediate language which can express these control effects. In this paper, we introduce you to
one such intermediate language: the sequent-calculus-based 𝜆𝜇𝜇̃-calculus. The result of compiling
the efficient multiplication function to the 𝜆𝜇𝜇̃-calculus is:

def mult(𝑙 ;𝛼) ≔ mult’(𝑙 ;𝛼,𝛼)
def mult’(𝑙 ;𝛼, 𝛽) ≔

⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩,mult’(𝑥𝑠 ;𝛼, 𝜇̃𝑧 . ∗ (𝑥, 𝑧; 𝛽)))}⟩

Here is how you read this snippet: Besides the list argument 𝑙 , the definition def mult(𝑙 ;𝛼) ≔ . . .
takes an argument 𝛼 which indicates how the computation should continue once the result of the
multiplication is computed (we again use ; to separate these two kinds of arguments). The helper
function mult’ takes a list argument 𝑙 and two arguments 𝛼 and 𝛽 ; the argument 𝛽 indicates where
the function should return to on a normal recursive call while𝛼 indicates the return point of a short-
circuiting computation. In the body of mult’ we use ⟨𝑙 | case {Nil ⇒ . . . ,Cons(𝑥, 𝑥𝑠) ⇒ . . .}⟩ to
perform a case split on the list 𝑙 . If the list is Nil, then we use ⟨1 | 𝛽⟩ to return 1 to 𝛽 , which is
the return for a normal recursive call. If the list has the form Cons(𝑥, 𝑥𝑠) and 𝑥 is zero, we return
with ⟨0 | 𝛼⟩, where 𝛼 is the return point which short-circuits the computation. If 𝑥 isn’t zero, then
we have to perform the recursive call mult’(𝑥𝑠 ;𝛼, 𝜇̃𝑧 . ∗ (𝑥, 𝑧; 𝛽)), where we use 𝜇̃𝑧 . ∗ (𝑥, 𝑧; 𝛽) to
bind the result of the recursive call to the variable 𝑧 before multiplying it with 𝑥 and returning to
𝛽 . Don’t be discouraged if this looks complicated at the moment; the main part of this paper will
cover everything in much more detail.

Fig. 1. Screenshot of the online evaluator available at
grokking-sc.github.io/grokking-sc.

The 𝜆𝜇𝜇̃-calculus that you have just
seen was first introduced by Curien and
Herbelin [2000] as a solution to a long-
standing open question: What should a
term language for the sequent calculus
look like? The sequent calculus is one of
two influential proof calculi introduced
by Gentzen [1935a,b] in a single paper,
the other calculus being natural deduc-
tion.The term language for natural deduc-
tion is the ordinary lambda calculus, but it
was difficult to find a good term language
for the sequent calculus. After it had been
found, the 𝜆𝜇𝜇̃-calculus was proposed as
a better foundation for compiler interme-
diate languages, for example by Downen
et al. [2016]. Despite this, most language
designers and compiler writers are still
unfamiliar with it. This is the situation
that we hope to remedy with this pearl.

We frequently discuss ideas which in-
volve the 𝜆𝜇𝜇̃-calculus with students and
colleagues and therefore have to intro-
duce them to its central ideas. But we usually cannot motivate the 𝜆𝜇𝜇̃-calculus as a term as-
signment system for the sequent calculus, since most of them are not familiar with it. We instead
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Γ,𝛼 :cns 𝜏 ⊢ 𝑠 𝜇
Γ ⊢ 𝜇𝛼 .𝑠 :prd 𝜏

Γ, 𝑥 :prd 𝜏 ⊢ 𝑠
𝜇̃

Γ ⊢ 𝜇̃𝑥 .𝑠 :cns 𝜏
𝑥 :prd 𝜏 ∈ Γ VaR1
Γ ⊢ 𝑥 :prd 𝜏

𝛼 :cns 𝜏 ∈ Γ VaR2
Γ ⊢ 𝛼 :cns 𝜏

Γ ⊢ 𝑝 :prd 𝜏 Γ ⊢ 𝑐 :cns 𝜏
Cut

Γ ⊢ ⟨𝑝 | 𝑐⟩

Γ ⊢ 𝑝 :prd Int Γ ⊢ 𝑠1 Γ ⊢ 𝑠2 IfZ
Γ ⊢ ifz(𝑝, 𝑠1, 𝑠2)

Lit
Γ ⊢ !𝑛" :prd Int

Γ ⊢ 𝑝1 :
prd Int Γ ⊢ 𝑝2 :

prd Int Γ ⊢ 𝑐 :cns Int
binop

Γ ⊢ ⊙(𝑝1, 𝑝2; 𝑐)

def 𝑓 (𝑥𝑖 :prd 𝜏𝑖 ;𝛼 𝑗 :
cns 𝜏 𝑗 ) ∈ 𝑃 Γ ⊢ 𝑝𝑖 :prd 𝜏𝑖 Γ ⊢ 𝑐 𝑗 :cns 𝜏 𝑗

Call
Γ ⊢𝑃 𝑓 (𝑝𝑖 ; 𝑐 𝑗 )

Γ ⊢ 𝑠1 Γ, 𝑥 :prd 𝜏, 𝑥𝑠 :prd List(𝜏) ⊢ 𝑠2 Case-List
Γ ⊢ case {Nil ⇒ 𝑠1, Cons(𝑥, 𝑥𝑠) ⇒ 𝑠2} :

cns List(𝜏)

Nil
Γ ⊢ Nil :prd List(𝜏)

Γ ⊢ 𝑡1 :
prd 𝜏 Γ ⊢ 𝑡2 :

prd List(𝜏)
Cons

Γ ⊢ Cons(𝑡1, 𝑡2) :
prd List(𝜏)

Γ ⊢ 𝑡1 :
prd 𝜏1 Γ ⊢ 𝑡2 :

prd 𝜏2 Tup
Γ ⊢ Tup(𝑡1, 𝑡2) :

prd Pair(𝜏1, 𝜏2)

Γ, 𝑥 :prd 𝜏1,𝑦 :prd 𝜏2 ⊢ 𝑠 Case-PaiR
Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏 Hd
Γ ⊢ hd(𝑘) :cns Stream(𝜏)

Γ ⊢ 𝑘 :cns Stream(𝜏)
Tl

Γ ⊢ tl(𝑘) :cns Stream(𝜏)

Γ,𝛼 :cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :cns Stream(𝜏) ⊢ 𝑠2 Cocase-StReam
Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :

prd Stream(𝜏)

Γ ⊢ 𝑘 :cns 𝜏1 Fst
Γ ⊢ fst(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏2 Snd
Γ ⊢ snd(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ,𝛼 :cns 𝜏1 ⊢ 𝑠1 Γ, 𝛽 :cns 𝜏2 ⊢ 𝑠2 Cocase-LPaiR
Γ ⊢ cocase {fst(𝛼) ⇒ 𝑠1, snd(𝛽) ⇒ 𝑠2} :

prd LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑝 :prd 𝜎 Γ ⊢ 𝑐 :cns 𝜏
Ap

Γ ⊢ ap(𝑝, 𝑐) :cns 𝜎 → 𝜏

Γ, 𝑥 :prd 𝜎,𝛼 :cns 𝜏 ⊢ 𝑠
Cocase-Fun

Γ ⊢ cocase {ap(𝑥,𝛼) ⇒ 𝑠} :prd 𝜎 → 𝜏

Wf-Empty
⊢ ∅ OK

⊢ 𝑃 OK 𝑥 :prd 𝜏𝑖 ,𝛼 :cns 𝜏 𝑗 ⊢𝑃,def f(𝑥𝑖 :prd𝜏𝑖 ;𝛼 𝑗 :
cns𝜏 𝑗 )≔𝑠

𝑠

Wf-Cons
⊢ 𝑃, def f(𝑥𝑖 :prd 𝜏𝑖 ,𝛼 𝑗 :

cns 𝜏 𝑗 ) ≔ 𝑠 OK

Fig. 2. Typing rules of Core.
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Γ ⊢ 𝜇𝛼 .𝑠 :prd 𝜏

Γ, 𝑥 :prd 𝜏 ⊢ 𝑠
𝜇̃

Γ ⊢ 𝜇̃𝑥 .𝑠 :cns 𝜏
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𝛼 :cns 𝜏 ∈ Γ VaR2
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prd List(𝜏)
Cons
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prd List(𝜏)

Γ ⊢ 𝑡1 :
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prd 𝜏2 Tup
Γ ⊢ Tup(𝑡1, 𝑡2) :
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Γ, 𝑥 :prd 𝜏1,𝑦 :prd 𝜏2 ⊢ 𝑠 Case-PaiR
Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏 Hd
Γ ⊢ hd(𝑘) :cns Stream(𝜏)

Γ ⊢ 𝑘 :cns Stream(𝜏)
Tl

Γ ⊢ tl(𝑘) :cns Stream(𝜏)

Γ,𝛼 :cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :cns Stream(𝜏) ⊢ 𝑠2 Cocase-StReam
Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :

prd Stream(𝜏)

Γ ⊢ 𝑘 :cns 𝜏1 Fst
Γ ⊢ fst(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏2 Snd
Γ ⊢ snd(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ,𝛼 :cns 𝜏1 ⊢ 𝑠1 Γ, 𝛽 :cns 𝜏2 ⊢ 𝑠2 Cocase-LPaiR
Γ ⊢ cocase {fst(𝛼) ⇒ 𝑠1, snd(𝛽) ⇒ 𝑠2} :

prd LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑝 :prd 𝜎 Γ ⊢ 𝑐 :cns 𝜏
Ap

Γ ⊢ ap(𝑝, 𝑐) :cns 𝜎 → 𝜏

Γ, 𝑥 :prd 𝜎,𝛼 :cns 𝜏 ⊢ 𝑠
Cocase-Fun

Γ ⊢ cocase {ap(𝑥,𝛼) ⇒ 𝑠} :prd 𝜎 → 𝜏

Wf-Empty
⊢ ∅ OK

⊢ 𝑃 OK 𝑥 :prd 𝜏𝑖 ,𝛼 :cns 𝜏 𝑗 ⊢𝑃,def f(𝑥𝑖 :prd𝜏𝑖 ;𝛼 𝑗 :
cns𝜏 𝑗 )≔𝑠

𝑠

Wf-Cons
⊢ 𝑃, def f(𝑥𝑖 :prd 𝜏𝑖 ,𝛼 𝑗 :

cns 𝜏 𝑗 ) ≔ 𝑠 OK

Fig. 2. Typing rules of Core.
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Γ,𝛼 :cns 𝜏 ⊢ 𝑠 𝜇
Γ ⊢ 𝜇𝛼 .𝑠 :prd 𝜏

Γ, 𝑥 :prd 𝜏 ⊢ 𝑠
𝜇̃

Γ ⊢ 𝜇̃𝑥 .𝑠 :cns 𝜏
𝑥 :prd 𝜏 ∈ Γ VaR1
Γ ⊢ 𝑥 :prd 𝜏

𝛼 :cns 𝜏 ∈ Γ VaR2
Γ ⊢ 𝛼 :cns 𝜏

Γ ⊢ 𝑝 :prd 𝜏 Γ ⊢ 𝑐 :cns 𝜏
Cut

Γ ⊢ ⟨𝑝 | 𝑐⟩

Γ ⊢ 𝑝 :prd Int Γ ⊢ 𝑠1 Γ ⊢ 𝑠2 IfZ
Γ ⊢ ifz(𝑝, 𝑠1, 𝑠2)

Lit
Γ ⊢ !𝑛" :prd Int

Γ ⊢ 𝑝1 :
prd Int Γ ⊢ 𝑝2 :

prd Int Γ ⊢ 𝑐 :cns Int
binop

Γ ⊢ ⊙(𝑝1, 𝑝2; 𝑐)

def 𝑓 (𝑥𝑖 :prd 𝜏𝑖 ;𝛼 𝑗 :
cns 𝜏 𝑗 ) ∈ 𝑃 Γ ⊢ 𝑝𝑖 :prd 𝜏𝑖 Γ ⊢ 𝑐 𝑗 :cns 𝜏 𝑗

Call
Γ ⊢𝑃 𝑓 (𝑝𝑖 ; 𝑐 𝑗 )

Γ ⊢ 𝑠1 Γ, 𝑥 :prd 𝜏, 𝑥𝑠 :prd List(𝜏) ⊢ 𝑠2 Case-List
Γ ⊢ case {Nil ⇒ 𝑠1, Cons(𝑥, 𝑥𝑠) ⇒ 𝑠2} :

cns List(𝜏)

Nil
Γ ⊢ Nil :prd List(𝜏)

Γ ⊢ 𝑡1 :
prd 𝜏 Γ ⊢ 𝑡2 :

prd List(𝜏)
Cons

Γ ⊢ Cons(𝑡1, 𝑡2) :
prd List(𝜏)

Γ ⊢ 𝑡1 :
prd 𝜏1 Γ ⊢ 𝑡2 :

prd 𝜏2 Tup
Γ ⊢ Tup(𝑡1, 𝑡2) :

prd Pair(𝜏1, 𝜏2)

Γ, 𝑥 :prd 𝜏1,𝑦 :prd 𝜏2 ⊢ 𝑠 Case-PaiR
Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏 Hd
Γ ⊢ hd(𝑘) :cns Stream(𝜏)

Γ ⊢ 𝑘 :cns Stream(𝜏)
Tl

Γ ⊢ tl(𝑘) :cns Stream(𝜏)

Γ,𝛼 :cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :cns Stream(𝜏) ⊢ 𝑠2 Cocase-StReam
Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :

prd Stream(𝜏)

Γ ⊢ 𝑘 :cns 𝜏1 Fst
Γ ⊢ fst(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :cns 𝜏2 Snd
Γ ⊢ snd(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ,𝛼 :cns 𝜏1 ⊢ 𝑠1 Γ, 𝛽 :cns 𝜏2 ⊢ 𝑠2 Cocase-LPaiR
Γ ⊢ cocase {fst(𝛼) ⇒ 𝑠1, snd(𝛽) ⇒ 𝑠2} :

prd LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑝 :prd 𝜎 Γ ⊢ 𝑐 :cns 𝜏
Ap

Γ ⊢ ap(𝑝, 𝑐) :cns 𝜎 → 𝜏

Γ, 𝑥 :prd 𝜎,𝛼 :cns 𝜏 ⊢ 𝑠
Cocase-Fun

Γ ⊢ cocase {ap(𝑥,𝛼) ⇒ 𝑠} :prd 𝜎 → 𝜏

Wf-Empty
⊢ ∅ OK

⊢ 𝑃 OK 𝑥 :prd 𝜏𝑖 ,𝛼 :cns 𝜏 𝑗 ⊢𝑃,def f(𝑥𝑖 :prd𝜏𝑖 ;𝛼 𝑗 :
cns𝜏 𝑗 )≔𝑠

𝑠

Wf-Cons
⊢ 𝑃, def f(𝑥𝑖 :prd 𝜏𝑖 ,𝛼 𝑗 :

cns 𝜏 𝑗 ) ≔ 𝑠 OK

Fig. 2. Typing rules of Core.
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Definition 2.2 (Evaluation for Arithmetic Expressions).
Fun

𝔱 ! !𝑛" Values

ifz(!0", 𝑡1, 𝑡2) ⊲ 𝑡1

ifz(!𝑛", 𝑡1, 𝑡2) ⊲ 𝑡2 (if 𝑛 ≠ 0)
!𝑛" ⊙ !𝑚" ⊲ !𝑛 ⊙𝑚"

Core

𝔭 ! !𝑛" Values
𝔠 ! 𝛼 Covalues

ifz(!0", 𝑠1, 𝑠2) ⊲ 𝑠1

ifz(!𝑛", 𝑠1, 𝑠2) ⊲ 𝑠2 (if 𝑛 ≠ 0)
⊙(!𝑛", !𝑚"; 𝑐) ⊲ ⟨!𝑛 ⊙𝑚" | 𝑐⟩

⟨𝜇𝛼 .𝑠 | 𝔠⟩ ⊲ 𝑠 [𝔠/𝛼]

The first interesting aspect of the language Core is that there are both values and covalues. This
can be explained by the role that values play in operational semantics: they specify the subset
of terms that we are allowed to substitute for a variable. And since we have both variables which
stand for producers and covariables which stand for consumers, we need both values and covalues
as the respective subsets which we are allowed to substitute for a variable or covariable.

The second interesting aspect of the language Core is that only statements are reduced, not
producers or consumers. This substantiates our remark from above that it is statements that intro-
duce dynamism into the language by driving computation. It also contributes to the feeling that
reduction in the language is close to the evaluation of an abstract machine and that the statements
of Core correspond to the states of such an abstract machine.

We are still faced with a small problem when we want to show that a term of Fun evaluates to
the same result as its translation intoCore:We have only specified the reduction for statements but
not for producers. We can easily solve this problem by introducing a special covariable⋆ which
acts as the “top-level” consumer of an evaluation. Using ⋆ we can then evaluate the statement
⟨!𝑡" | ⋆⟩ instead of the producer !𝑡".

Example 2.1. Consider the two terms !2" ∗ !3" and ifz(!2", !5", !10") of Fun. Their respective
translations intoCore are 𝜇𝛼 .∗(!2", !3";𝛼) and 𝜇𝛼 .ifz(!2", ⟨!5" | 𝛼⟩, ⟨!10" | 𝛼⟩). Whenwewrap
them into a statement using the top-level continuation⋆, we observe the following evaluation:

⟨𝜇𝛼 . ∗ (!2", !3";𝛼) | ⋆⟩ ⊲ ∗(!2", !3";⋆) ⊲ ⟨!6" | ⋆⟩

⟨𝜇𝛼 .ifz(!2", ⟨!5" | 𝛼⟩, ⟨!10" | 𝛼⟩) | ⋆⟩ ⊲ ifz(!2", ⟨!5" | ⋆⟩, ⟨!10" | ⋆⟩) ⊲ ⟨!10" | ⋆⟩

We have successfully evaluated the first term to the result !6" and the second term to the result
!10".

In the following, we will often leave out the first reduction step in examples, thus silently re-
placing the covariable bound by the outermost 𝜇-binding with the top-level consumer⋆.

Here is a bigger problem that we haven’t addressed yet. The evaluation rules in the present
section do not allow to evaluate nested expressions like (!2" ∗ !4") + !5" in Fun or its translation
𝜇𝛼 . + (𝜇𝛽 . ∗ (!2", !4"; 𝛽), !5";𝛼) in Core. We will discuss this problem and its solution in more
detail in Section 3.

2.2 Let Bindings
Let-bindings are important since we can use them to eliminate duplication and make code more
readable. In this section we introduce let-bindings to Fun for an additional reason: they allow us
to introduce the second construct which gives the 𝜆𝜇𝜇̃-calculus its name: 𝜇̃-abstractions.
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arguments to be values in that rule (but only that the destructor is a covalue), we could easily
introduce an unfocused term again by substituting a non-value for a variable.

Definition 3.2 (Static Focusing). Static focusing is done using the following rules:
Producers

F (!𝑛") ≔ !𝑛"
F (𝑥) ≔ 𝑥

F (𝜇𝛼 .𝑠) ≔ 𝜇𝛼 .F (𝑠)
F (𝐾 (𝔭, 𝑝, 𝑝; 𝑐)) ≔ 𝜇𝛼 .⟨F (𝑝) | 𝜇̃𝑥 .⟨F (𝐾 (𝔭, 𝑥, 𝑝, 𝑐)) | 𝛼⟩⟩ (𝑝 not a value)

(𝛼, 𝑥 fresh)
F (𝐾 (𝔭; 𝑐)) ≔ 𝐾 (F (𝔭);F (𝑐))

F (cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}) ≔ cocase {𝐷 (𝑥 ;𝛼) ⇒ F (𝑠)}

Consumers
F (𝛼) ≔ 𝛼

F (𝜇̃𝑥 .𝑠) ≔ 𝜇̃𝑥 .F (𝑠)

F (case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}) ≔ case {𝐾 (𝑥 ;𝛼) ⇒ F (𝑠)}
F (𝐷 (𝔭, 𝑝, 𝑝, 𝑐)) ≔ 𝜇̃𝑦.⟨F (𝑝) | 𝜇̃𝑥 .⟨𝑦 | F (𝐷 (𝔭, 𝑥, 𝑝; 𝑐))⟩⟩ (𝑝 not a value)

(𝑥,𝑦 fresh)
F (𝐷 (𝔭; 𝑐)) ≔ 𝐷 (F (𝔭);F (𝑐))

Statements
F (⟨𝑝 | 𝑐⟩) ≔ ⟨F (𝑝) | F (𝑐)⟩

F (⊙(𝑝1, 𝑝2, 𝑐)) ≔ ⟨F (𝑝1) | 𝜇̃𝑥 .F (⊙(𝑥, 𝑝2, 𝑐))⟩ (𝑝1 not a value), (𝑥 fresh)
F (⊙(𝔭, 𝑝, 𝑐)) ≔ ⟨F (𝑝) | 𝜇̃𝑥 .F (⊙(𝔭, 𝑥, 𝑐))⟩ (𝑝 not a value), (𝑥 fresh)

F (⊙(𝔭1,𝔭2, 𝑐)) ≔ ⊙(F (𝔭1), F (𝔭2), F (𝑐))
F (ifz(𝑝, 𝑠1, 𝑠2)) ≔ ⟨F (𝑝) | 𝜇̃𝑥 .ifz(𝑥, 𝑠1, 𝑠2)⟩ (𝑝 not a value), (𝑥 fresh)
F (ifz(𝔭, 𝑠1, 𝑠2)) ≔ ifz(F (𝔭), F (𝑠1), F (𝑠2))
F (f(𝔭, 𝑝, 𝑝; 𝑐)) ≔ ⟨F (𝑝) | 𝜇̃𝑥 .F (𝑓 (𝔭, 𝑥, 𝑝; 𝑐))⟩ (𝑝 not a value), (𝑥 fresh)

F (f(𝔭, 𝑐)) ≔ f(F (𝔭), F (𝑐))

The focusing transformation described in Definition 3.2 is not ideal since it creates a lot of ad-
ministrative redexes. As an example, consider how the statement defining mult’ from Example 2.7
is focused:
F (⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ∗(𝑥, 𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾); 𝛽))}⟩)
= ⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ⟨𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾) | 𝜇̃𝑧 . ∗ (𝑥, 𝑧; 𝛽)⟩)}⟩

Focusing has introduced the administrative redex ⟨𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾) | 𝜇̃𝑧 . ∗ (𝑥, 𝑧; 𝛽)⟩ in the second
statement of the ifz. After reducing this redex to mult’(𝑥𝑠 ;𝛼, 𝜇̃𝑧 . ∗ (𝑥, 𝑧; 𝛽)), we finally arrive at the
result from the introduction. In the implementation, we solve this problem by statically reducing
administrative redexes in a simplification step, but it is also possible to come up with a more
elaborate definition of focusing which does not create them in the first place. Such an optimized
focusing transformation is, however, much less transparent than the one we have described.

4 Typing Rules
In this section, we introduce the typing rules for Fun in Section 4.1 and for Core in Section 4.2. In
Section 4.3 we state type soundness for both languages and prove that the translation from Fun
to Core preserves the typeability of programs. We use the same constructors, destructors, types
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Insights!

• Let-Bindings and Control Operators are dual


• Pattern matching on Data and copattern matching on Codata are dual


• Commutative conversions (case-of-case) are μ-reductions


• Duality of call-by-value and call-by-name
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The sequent calculus is a proof system which was designed as a more symmetric alternative to natural de-
duction. The 𝜆𝜇𝜇̃-calculus is a term assignment system for the sequent calculus and a great foundation for
compiler intermediate languages due to its first-class representation of evaluation contexts. Unfortunately,
only experts of the sequent calculus can appreciate its beauty. To remedy this, we present the first intro-
duction to the 𝜆𝜇𝜇̃-calculus which is not directed at type theorists or logicians but at compiler hackers and
programming-language enthusiasts. We do this by writing a compiler from a small but interesting surface
language to the 𝜆𝜇𝜇̃-calculus as a compiler intermediate language.

CCS Concepts: •Theory of computation→ Lambda calculus; • Software and its engineering→ Com-
pilers; Control structures.

Additional KeyWords and Phrases: Intermediate representations, continuations, codata types, control effects
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1 Introduction
Suppose you have just implemented your own small functional language. To test it, you write the
following function which multiplies all the numbers contained in a list:

def mult(𝑙) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ 𝑥 ∗mult(𝑥𝑠) }

What bugs you about this implementation is that you know an obvious optimization:The function
should directly return zero if it encounters a zero in the list. There are many ways to achieve this,
but you choose to extend your language with labeled expressions and a goto instruction. This
allows you to write the optimized version:

def mult(𝑙) ≔ label 𝛼 {mult’(𝑙 ;𝛼) }
def mult’(𝑙 ;𝛼) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, goto(0;𝛼), 𝑥 ∗mult’(𝑥𝑠 ;𝛼)) }

You used label 𝛼 {mult’(𝑙 ;𝛼)} to introduce a label 𝛼 around the call to the helper function mult’
which takes this label as an additional argument (we use ; to separate the label argument from
the other arguments), and goto(0;𝛼) to jump to this label 𝛼 with the expression 0 in the recursive
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5.4 The Case-of-Case Transformation
One important transformation in functional compilers is the case-of-case transformation. Maurer
et al. [2017] give the following example of this transformation. The term

if (if 𝑒1 then 𝑒2 else 𝑒3) then 𝑒4 else 𝑒5

can be replaced by the term
if 𝑒1 then (if 𝑒2 then 𝑒4 else 𝑒5) else (if 𝑒3 then 𝑒4 else 𝑒5).

Logicians call these kinds of transformations commutative conversions, and they play an important
role in the study of the sequent calculus. But as Maurer et al. [2017] show, they are also important
for compiler writers who want to generate efficient code.

In the 𝜆𝜇𝜇̃-calculus, commuting conversions don’t have to be implemented as a special compiler
pass. They fall out for free as a special instance of 𝜇-reductions! Let us illustrate this point by
translating Maurer et al.’s example into the 𝜆𝜇𝜇̃-calculus. First, let us translate the two examples
using pattern-matching syntax:

case (case 𝑒1 of {T ⇒ 𝑒2; F ⇒ 𝑒3}) of {T ⇒ 𝑒4; F ⇒ 𝑒5}

case 𝑒1 of {T ⇒ case 𝑒2 of {T ⇒ 𝑒4; F ⇒ 𝑒5}; F ⇒ case 𝑒3 of {T ⇒ 𝑒4; F ⇒ 𝑒5}}

Let us now translate these two terms into the 𝜆𝜇𝜇̃-calculus:
𝜇𝛼 .⟨𝜇𝛽 .⟨!𝑒1" | case {T ⇒ ⟨!𝑒2" | 𝛽⟩; F ⇒ ⟨𝑒3 | 𝛽⟩}⟩ | case {T ⇒ ⟨!𝑒4" | 𝛼⟩, F ⇒ ⟨!𝑒5" | 𝛼⟩}⟩

𝜇𝛼 .⟨!𝑒1"|case {

T ⇒ ⟨𝜇𝛽 .⟨!𝑒2" | case {T ⇒ ⟨!𝑒4" | 𝛽⟩, F ⇒ ⟨!𝑒5" | 𝛽⟩}⟩ | 𝛼⟩

F ⇒ ⟨𝜇𝛽 .⟨!𝑒3" | case {T ⇒ ⟨!𝑒4" | 𝛽⟩, F ⇒ ⟨!𝑒5" | 𝛽⟩}⟩ | 𝛼⟩}⟩

We can see that just by reducing all of the underlined redexes we reduce both of these examples
to the same term.

5.5 Direct and Indirect Consumers
As mentioned in the introduction, a natural competitor of sequent calculus as an intermediate rep-
resentation is continuation-passing style (CPS). In CPS, reified evaluation contexts are represented
by functions. This makes the resulting types of programs in CPS arguably harder to understand.
There is, however, another advantage of sequent calculus over CPS as described by Downen et al.
[2016]. The first-class representation of consumers in sequent calculus allows us to distinguish be-
tween two different kinds of consumers: direct consumers, i.e., destructors, and indirect consumers.
In particular, this allows to chain direct consumers in Core in a similar way as in Fun.

Suppose we have a codata type with destructors get and set for getting and setting the value
of a reference. Now consider the following chain of destructor calls on a reference 𝑟 in Fun

𝑟 .set(3).set(4).get()

A compiler could use a user-defined custom rewrite rule for rewriting two subsequent calls to set

into only the second call. In Core the above example looks as follows:
𝜇𝛼 .⟨𝑟 | set(3; set(4; get(𝛼)⟩

We still can immediately see the direct chaining of destructors and thus apply essentially the same
rewrite rule. In CPS, however, the example would rather become

𝜆𝑘 . 𝑟 .set(3; 𝜆𝑠 . 𝑠 .set(4; 𝜆𝑡 . 𝑡 .get(𝑘)))
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5.4 The Case-of-Case Transformation
One important transformation in functional compilers is the case-of-case transformation. Maurer
et al. [2017] give the following example of this transformation. The term

if (if 𝑒1 then 𝑒2 else 𝑒3) then 𝑒4 else 𝑒5

can be replaced by the term
if 𝑒1 then (if 𝑒2 then 𝑒4 else 𝑒5) else (if 𝑒3 then 𝑒4 else 𝑒5).

Logicians call these kinds of transformations commutative conversions, and they play an important
role in the study of the sequent calculus. But as Maurer et al. [2017] show, they are also important
for compiler writers who want to generate efficient code.

In the 𝜆𝜇𝜇̃-calculus, commuting conversions don’t have to be implemented as a special compiler
pass. They fall out for free as a special instance of 𝜇-reductions! Let us illustrate this point by
translating Maurer et al.’s example into the 𝜆𝜇𝜇̃-calculus. First, let us translate the two examples
using pattern-matching syntax:

case (case 𝑒1 of {T ⇒ 𝑒2; F ⇒ 𝑒3}) of {T ⇒ 𝑒4; F ⇒ 𝑒5}
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𝜇𝛼 .⟨!𝑒1"|case {

T ⇒ ⟨𝜇𝛽 .⟨!𝑒2" | case {T ⇒ ⟨!𝑒4" | 𝛽⟩, F ⇒ ⟨!𝑒5" | 𝛽⟩}⟩ | 𝛼⟩
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To get acquainted with our syntax, let us first briefly look at two short examples in Fun. The
following definition calculates the sum over a List it receives as input.

def sum(𝑥) ≔ case 𝑥 of {Nil ⇒ !0", Cons(𝑦,𝑦𝑠) ⇒ 𝑦 + sum(𝑦𝑠)}

It does so by pattern matching using the case ... of {...} construct which is entirely standard. As
an example of codata types, consider this definition:

def repeat(𝑥) ≔ cocase {hd ⇒ 𝑥, tl ⇒ repeat(𝑥)}

It constructs an infinite Stream whose elements are all the same as the input 𝑥 of the function. A
Stream is defined by two destructors, hd yields the head of the stream and tl yields the remaining
stream without the head. The stream is constructed by copattern matching [Abel et al. 2013] using
the cocase {...} construct.

Definition 2.5 (Algebraic Data and Codata Types).

Fun

𝑡 ! . . . | 𝐾 (𝑡) | case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡}

| 𝑡 .𝐷 (𝑡) | cocase {𝐷 (𝑥) ⇒ 𝑡}

𝔱 ! . . . | 𝐾 (𝔱) | cocase {𝐷 (𝑥) ⇒ 𝑡}

case 𝐾 (𝔱) of {𝐾 (𝑥) ⇒ 𝑡, . . .} ⊲ 𝑡 [𝔱/𝑥]

cocase {𝐷 (𝑥) ⇒ 𝑡, . . .}.𝐷 (𝔱) ⊲ 𝑡 [𝔱/𝑥]

Core

𝑝 ! . . . | 𝐾 (𝑝; 𝑐) | cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}

𝑐 ! . . . | 𝐷 (𝑝; 𝑐) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}

𝔭 ! . . . | 𝐾 (𝔭; 𝑐) | cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}

𝔠 ! . . . | 𝐷 (𝑝; 𝑐) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}

⟨𝐾 (𝔭; 𝔠) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠, . . .}⟩ ⊲ 𝑠 [𝔭/𝑥 ; 𝔠/𝛼]

⟨cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠, . . .} | 𝐷 (𝔭; 𝔠)⟩ ⊲ 𝑠 [𝔭/𝑥 ; 𝔠/𝛼]

!𝐾 (𝑡1, . . . , 𝑡𝑛)" ≔ 𝐾 (!𝑡1", . . . , !𝑡𝑛")

!case 𝑡 of {𝐾𝑖 (𝑥𝑖, 𝑗 ) ⇒ 𝑡𝑖 }" ≔ 𝜇𝛼 .⟨!𝑡" | case {𝐾𝑖 (𝑥𝑖, 𝑗 ) ⇒ ⟨!𝑡𝑖" | 𝛼⟩}⟩ (𝛼 fresh)
!𝑡 .𝐷 (𝑡1, . . . , 𝑡𝑛)" ≔ 𝜇𝛼 .⟨!𝑡" | 𝐷 (!𝑡1", . . . , !𝑡𝑛";𝛼)⟩ (𝛼 fresh)

!cocase {𝐷𝑖 (𝑥𝑖, 𝑗 ) ⇒ 𝑡𝑖 }" ≔ cocase {𝐷𝑖 (𝑥𝑖, 𝑗 ;𝛼𝑖 ) ⇒ ⟨!𝑡𝑖" | 𝛼𝑖⟩} (𝛼𝑖 fresh)

The general syntax is given in Definition 2.5. We assume fixed sets of constructors 𝐾 containing
at least Nil, Cons and Tup and destructors𝐷 containing at least hd, tl, fst and snd. In Funwe use
constructors 𝐾 to define both terms 𝐾 (𝑡) and case expressions case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡}. Destructors
𝐷 of codata types are used in destructor terms 𝑡 .𝐷 (𝑡) and cocase expressions cocase {𝐷 (𝑥) ⇒ 𝑡}.
The term 𝑡 in case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡} and 𝑡 .𝐷 (𝑡) is called the scrutinee in both cases.

2.4.1 Data Types. Let us consider another example to better understand the general syntax:

def swap(𝑥) ≔ case 𝑥 of {Tup(𝑦, 𝑧) ⇒ Tup(𝑧,𝑦)}

The function swap takes a Pair and swaps its elements. To do so, it pattern matches on its input
using the case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡} construct, and constructs a tuple using a constructor 𝐾 (𝑡), where
𝐾 is specialized to Tup. Our syntax is quite general, so it is easy to extend it with new constructors;
any such extension only requires that we also add corresponding typing rules (Section 4).

In Core, data types are mostly handled in the same way as in Fun. The main difference is that
the scrutinee is no longer a part of a case expression. Instead, the case expression is a consumer and
the scrutinee is a producer, which are then combined in a statement. This is exactly what is done
in the translation. When a case and a constructor meet, there is an opportunity for computation,
consuming the constructed term and continuing with the corresponding right-hand side of the case
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