
TyDe '22, David Binder, Ingo Skupin, David Läwen, Klaus Ostermann

Structural Refinement Types

1

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

2

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

 ℕ → ℕ

3

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

 ℕ → ℕ

4

Consider: pred Z

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

∀α . ⟨ S(α) ⟩ → α

5

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

∀α . ⟨ S(α) ⟩ → α

6

Consider: pred S(true)

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

⟨ℕ |S(ℕ⊤)⟩ → ℕ⊤

7

Structural Re�nement Types
David Binder

University of Tübingen
Germany

david.binder@uni-tuebingen.de

Ingo Skupin
University of Tübingen

Germany
skupin@informatik.uni-tuebingen.de

David Läwen
University of Tübingen

Germany
david.laewen@gmx.de

Klaus Ostermann
University of Tübingen

Germany
klaus.ostermann@uni-tuebingen.de

Abstract
Static types are a great form of lightweight static analysis.
But sometimes a type like List is too coarse – we would
also like to work with its re�nements like non-empty lists,
or lists containing exactly 42 elements. Dependent types
allow for this, but they impose a heavy proof burden on
the programmer. We want the checking and inference of
re�nements to be fully automatic.

In this article we present a simple re�nement type system
and inference algorithm which uses only variants of familiar
concepts from constraint-based type inference. Concretely,
we build on the algebraic subtyping approach and extend it
with typing rules which combine properties of nominal and
structural type systems in a novel way. Despite the simplicity
of our approach, the resulting type system is very expres-
sive and allows to specify and infer non-trivial properties of
programs.

CCS Concepts: • Theory of computation! Type theory.

Keywords: Structural Types, Nominal Types, Re�nement
Types, Algebraic Subtyping

ACM Reference Format:
David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann.
2022. Structural Re�nement Types. In Proceedings of the 7th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development (TyDe
’22), September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 13 pages. h�ps://doi.org/10.1145/3546196.3550163

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
h�ps://doi.org/10.1145/3546196.3550163

1 Introduction
Consider the following simple predecessor function on Peano
numbers:

def pred : _G .case G of {((=)) =}
According to most type systems and implementations,

this function is partial. How programming languages handle
this partiality may di�er; some implementations will crash
at runtime while others generate a warning or an error at
compile-time. But there is another alternative: This function
is a perfectly well-behaved total function on the domain
of non-zero Peano numbers. Expressing and inferring such
re�nements of data types is the subject of this article.
We are certainly not the �rst to have made this obser-

vation. More �ne-grained types of this sort are commonly
known as re�nement types [6]. In distinction to dependent
types, which can express almost arbitrary subsets of types,
re�nement types are much more lightweight. A heavy em-
phasis on automation makes it so that little to no additional
annotations are required by the programmer to bene�t from
their expressiveness.

As soon as we introduce re�nement types into a type sys-
tem, some notion of subtyping comes into play: If a function
expects a number as an argument, it is clearly also valid to
pass a subtype such as a non-zero number. So we need sub-
typing, but the design of a global type inference algorithm
with nice properties such as principal types for a systemwith
both subtyping and parametric polymorphism is known to
be a hairy problem. Luckily for us, we don’t have to solve
this problem ourselves, since Dolan and Mycroft [3, 4] as
well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used
as a blueprint to design a type system which ful�lls the de-
sired properties, similar to how the basic Hindley-Milner
algorithm can be used as a blueprint for further type system
extensions.
While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the
following discovery, which we present as our central contri-
bution in this paper: We implemented both ordinary nominal
algebraic data types, as well as purely structural data types
in the form of polymorphic variants [7]. We then realized

15

⟨ℕ |S(ℕ⊤)⟩ → ℕ⊤

7

ℕ⊤ := μα . ⟨ℕ |Z, S(α)⟩

Our simple idea:

 ℕ → ℕ ∀α . ⟨ S(α) ⟩ → α

⟨ℕ |S(μα . ⟨ℕ |Z, S(α)⟩)⟩ → μα . ⟨ℕ |Z, S(α)⟩

Nominal Structural / Polymorphic Variant

Structural Refinement Type

8

Our simple idea:

 ℕ → ℕ ∀α . ⟨ S(α) ⟩ → α

⟨ℕ |S(μα . ⟨ℕ |Z, S(α)⟩)⟩ → μα . ⟨ℕ |Z, S(α)⟩

Nominal Structural / Polymorphic Variant

Structural Refinement Type

9

Our simple idea:

 ℕ → ℕ ∀α . ⟨ S(α) ⟩ → α

⟨ℕ |S(μα . ⟨ℕ |Z, S(α)⟩)⟩ → μα . ⟨ℕ |Z, S(α)⟩

Nominal Structural / Polymorphic Variant

Structural Refinement Type

10

Thankfully, we didn't have to do
any of the hard work!

11

Subtyping

12

Subtyping

• Refinement types require subtyping: Any function accepting natural numbers
should also accept non-zero natural numbers.

12

Subtyping

• Refinement types require subtyping: Any function accepting natural numbers
should also accept non-zero natural numbers.

• The combination of subtyping, parametric polymorphism and complete
inference of principal types is hard.

12

Subtyping

• Refinement types require subtyping: Any function accepting natural numbers
should also accept non-zero natural numbers.

• The combination of subtyping, parametric polymorphism and complete
inference of principal types is hard.

• We build upon the work on algebraic subtyping (AS) of Dolan (2017), Dolan
and Mycroft (2017), and Parreaux (2020) who showed how to do this.

12

Subtyping

• Refinement types require subtyping: Any function accepting natural numbers
should also accept non-zero natural numbers.

• The combination of subtyping, parametric polymorphism and complete
inference of principal types is hard.

• We build upon the work on algebraic subtyping (AS) of Dolan (2017), Dolan
and Mycroft (2017), and Parreaux (2020) who showed how to do this.

• Very similar idea to Hindley-Milner (HM) type-inference, but instead of type
equality constraints we generate type inequality constraints .σ ∼ τ σ <: τ

12

Typing rules for constructors

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

13

Typing rules for constructors

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

14

Typing rules for constructors

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

15

Typing rules for pattern matches
Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

h N | ; i <: g <: `U .h N | / , ((U) i
� ` 4 : h N | ((g) i
�, G : g ` 4(: d C���(Re�nement� ` case 4 of {((G)) 4(} : d

We require the term 4 to be of type h N | ((g) i, since we
only match against the successor constructor. But we also
require the argument of (to be some natural number, which
we express here with a lower and an upper bound on g . We
might learn more about the requirements that g must satisfy
in the body 4(, for example that g must be non-zero, too.

2.2 Lists
In the previous section we used the example of natural num-
bers, whose de�nition in the formal syntax of Section 3 will
look like this:

data Nat : (;) ! ⇤ { / () : Nat(;), ((rec@(;)) : Nat(;) }

After the name of the type constructor Nat we have to specify
its kind. Since natural numbers are not parameterized, the
kind is simply (;) ! ⇤, which is isomorphic to the kind ⇤ of
inhabited types. The recursive occurrence in the argument
of the constructor (is written using the special rec symbol,
which has to be applied to zero type arguments, using the
syntax rec@(;). This syntax makes more sense once we see
the de�nition of a parameterized type. The type of lists of
some element type U is de�ned as follows:

data List : (⇤;) ! ⇤ {
8U .Nil() : List(U ;),
8U .Cons(U, rec@(U ;)) : List(U ;) }

This de�nition introduces the type constructor List of kind
(⇤;) ! ⇤. In the algebraic subtyping system we have to keep
covariant and contravariant parameters of a type strictly sep-
arate. The element type of a list is a covariant argument, and
covariant arguments are written to the left of the semicolon
in the kind of List.
There is one central design question concerning parame-

terized types like lists. The problem can be illustrated with
the list Cons(True, Cons(False, Nil)). What should be the
type of this list? As we see it, there are two possible choices:

1. We infer the re�nement as if the programmer had
written a data type declaration of lists of booleans.
We call this the monomorphising approach. With this
approach, we infer the type of a two-element list which
contains the term True at the �rst position and the
term False at the second position.

2. We infer separate re�nements for the spine of the list
and the elements of the list. Using this approach, we
infer the type of a two element list (that is, a re�nement
on lists) whose elements are among the set containing
both True and False (that is, a re�nement of booleans).

On a technical level, this corresponds to introducing
a single uni�cation variable for all of the elements of
the list.

The types that are inferred using the �rst approach are more
precise, but this precision comes at a cost. Type inference
has to keep track of a lot more information, making it much
harder to scale to realistic programs. Secondly, the inferred
types are much harder to decipher for the user, and the
approach is overall less modular. For these reasons we have
decided to specify and implement the second approach.

An example for functions on lists can be found in Figure 1.
Note that all type annotations in Figure 1 are not necessary,
but they are checked can be used as documentation. The
mapNonEmpty function operates on the type NonEmpty of
non-empty lists, which is a subtype of the type FullList
of list of arbitrary length. This illustrates how we can keep
reasoning about the shape of the list separate from reason-
ing about the lists contents: mapNonEmpty keeps track of the
shape and allows us to recover the shape of the input in the
output, while at the same time remaining parametric over
the types of the elements of the lists involved. This allows us
to use its output as an input to the max function. At the same
time, we would still be able to use its output in any para-
metric function on lists like a listLength function since
NonEmpty is a subtype of FullList.

2.3 The Expressivity of Structural Re�nement Types
How expressive are the structural re�nement types that we
present here? In their paper, Freeman and Pfenning [6] al-
ready made the observation that they can only express re-
�nements that correspond to a regular sublanguage of the
original type, and we have the same restriction in our system.
For example, it is possible to express the re�nement type of
even natural numbers, but it is not possible to express the
re�nement type of natural numbers that are prime.
This restriction of the expressive power is essential in

several di�erent respects. The favorable closure properties
of regular languages are crucial when we compute and sim-
plify unions and intersections of re�nement types. The close
correspondence between types and �nite automata, which
explains the restriction to regular sublanguages, is also the
basis of the simpli�cation algorithms described by Dolan [3],
which we modify for our purposes in Section 4.4.

3 Formalization
In this section we describe the declarative type system; the
type inference algorithm will then be described in Section 4.
We introduce terms in Section 3.1, kinds in Section 3.2 and
most types in Section 3.3. We introduce the syntax and rules
of structural re�nement types in Section 3.4. We use the
notation 4 to denote a (possibly empty) list of elements 4 ,
following the conventions of Igarashi et al. [10].

18

16

Typing rules for pattern matches
Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

h N | ; i <: g <: `U .h N | / , ((U) i
� ` 4 : h N | ((g) i
�, G : g ` 4(: d C���(Re�nement� ` case 4 of {((G)) 4(} : d

We require the term 4 to be of type h N | ((g) i, since we
only match against the successor constructor. But we also
require the argument of (to be some natural number, which
we express here with a lower and an upper bound on g . We
might learn more about the requirements that g must satisfy
in the body 4(, for example that g must be non-zero, too.

2.2 Lists
In the previous section we used the example of natural num-
bers, whose de�nition in the formal syntax of Section 3 will
look like this:

data Nat : (;) ! ⇤ { / () : Nat(;), ((rec@(;)) : Nat(;) }

After the name of the type constructor Nat we have to specify
its kind. Since natural numbers are not parameterized, the
kind is simply (;) ! ⇤, which is isomorphic to the kind ⇤ of
inhabited types. The recursive occurrence in the argument
of the constructor (is written using the special rec symbol,
which has to be applied to zero type arguments, using the
syntax rec@(;). This syntax makes more sense once we see
the de�nition of a parameterized type. The type of lists of
some element type U is de�ned as follows:

data List : (⇤;) ! ⇤ {
8U .Nil() : List(U ;),
8U .Cons(U, rec@(U ;)) : List(U ;) }

This de�nition introduces the type constructor List of kind
(⇤;) ! ⇤. In the algebraic subtyping system we have to keep
covariant and contravariant parameters of a type strictly sep-
arate. The element type of a list is a covariant argument, and
covariant arguments are written to the left of the semicolon
in the kind of List.
There is one central design question concerning parame-

terized types like lists. The problem can be illustrated with
the list Cons(True, Cons(False, Nil)). What should be the
type of this list? As we see it, there are two possible choices:

1. We infer the re�nement as if the programmer had
written a data type declaration of lists of booleans.
We call this the monomorphising approach. With this
approach, we infer the type of a two-element list which
contains the term True at the �rst position and the
term False at the second position.

2. We infer separate re�nements for the spine of the list
and the elements of the list. Using this approach, we
infer the type of a two element list (that is, a re�nement
on lists) whose elements are among the set containing
both True and False (that is, a re�nement of booleans).

On a technical level, this corresponds to introducing
a single uni�cation variable for all of the elements of
the list.

The types that are inferred using the �rst approach are more
precise, but this precision comes at a cost. Type inference
has to keep track of a lot more information, making it much
harder to scale to realistic programs. Secondly, the inferred
types are much harder to decipher for the user, and the
approach is overall less modular. For these reasons we have
decided to specify and implement the second approach.

An example for functions on lists can be found in Figure 1.
Note that all type annotations in Figure 1 are not necessary,
but they are checked can be used as documentation. The
mapNonEmpty function operates on the type NonEmpty of
non-empty lists, which is a subtype of the type FullList
of list of arbitrary length. This illustrates how we can keep
reasoning about the shape of the list separate from reason-
ing about the lists contents: mapNonEmpty keeps track of the
shape and allows us to recover the shape of the input in the
output, while at the same time remaining parametric over
the types of the elements of the lists involved. This allows us
to use its output as an input to the max function. At the same
time, we would still be able to use its output in any para-
metric function on lists like a listLength function since
NonEmpty is a subtype of FullList.

2.3 The Expressivity of Structural Re�nement Types
How expressive are the structural re�nement types that we
present here? In their paper, Freeman and Pfenning [6] al-
ready made the observation that they can only express re-
�nements that correspond to a regular sublanguage of the
original type, and we have the same restriction in our system.
For example, it is possible to express the re�nement type of
even natural numbers, but it is not possible to express the
re�nement type of natural numbers that are prime.
This restriction of the expressive power is essential in

several di�erent respects. The favorable closure properties
of regular languages are crucial when we compute and sim-
plify unions and intersections of re�nement types. The close
correspondence between types and �nite automata, which
explains the restriction to regular sublanguages, is also the
basis of the simpli�cation algorithms described by Dolan [3],
which we modify for our purposes in Section 4.4.

3 Formalization
In this section we describe the declarative type system; the
type inference algorithm will then be described in Section 4.
We introduce terms in Section 3.1, kinds in Section 3.2 and
most types in Section 3.3. We introduce the syntax and rules
of structural re�nement types in Section 3.4. We use the
notation 4 to denote a (possibly empty) list of elements 4 ,
following the conventions of Igarashi et al. [10].

18

17

Typing rules for pattern matches
Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

used to solve the proof obligations for the programmer. By
contrast, we use only familiar techniques from constraint-
based type inference. The system of Jones and Ramsay [12] is
very similar in spirit to our system, but the re�nements they
allow are less expressive. They support re�nements which
can be expressed as the removal of constructors from the def-
inition of a type, but require these removals to be hereditary.
As such, they cannot express the type of non-empty lists,
which requires the removal of the Nil constructor only at
the top level. Our system lifts this limitation, supporting all
re�nements that can be expressed as a regular sublanguage
of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-
pli�ed version of our type system.

• In Section 3 we present the full declarative type system
with user de�ned and parameterized data types.

• In Section 4 we present the type inference algorithm,
and the algorithms used to simplify types. The type
inference algorithm uses a variant of the biuni�cation
algorithm introduced by Dolan and Mycroft [3, 4] with
some modi�cations inspired by Parreaux [14]. Type
simpli�cation is achieved by encoding types in �nite
automata and using familiar simpli�cation techniques
from automata theory.

• We discuss related work in Section 5, future work in
Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-
proach [3, 4, 14] and to extend it with types which combine
the typing rules for nominal and structural types. In Sec-
tion 3 and Section 4 we will present these rules with all the
gory details. Since we show how to implement structural
re�nement types for arbitrary user-de�ned data types, the
resulting rules are quite complex. In order to make them
more palatable, we specialize the rules in this section to two
examples: Peano numbers and lists. In Section 2.1 we show
how to work with re�nements of Peano numbers, since they
are the simplest example involving recursive types. We show
how to deal with re�nements of lists in Section 2.2. Parame-
terized types like lists pose an interesting design question.
Should we compute re�nements of the spine of the list and
its elements separately, or together? We chose to re�ne them
separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with
two constructors: zero (/) and successor ((). The typing rules
for the constructors and the pattern match are familiar:

ZNominal� ` / : N
� ` 4 : N SNominal� ` ((4) : N

� ` 4 : N � ` 4/ : g �, G : N ` 4(: g C���NNominal� ` case 4 of {/) 4/ , ((G)) 4(} : g

Nothing about these rules is surprising. But note that even
in these very simple rules one of the essential characteristics
of all static analyses is already present. The types that we
use are a conservative approximation, as the single type N
is used for all natural numbers.
In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.
The typing rule for zero and the successor would then be the
following:

ZStructural� ` 8Z : h 8Z i
� ` 4 : f SStructural� ` 8S(4) : h 8S(f) i

If we compare them to the previous rules, we can make
the following observations: The inferred type h 8Z i for
zero is much more informative, it is even speci�c enough to
deduce the only possible inhabitant, namely the number 0!
And the same holds true for the rule for the successor; from
the type in the conclusion of the rule we can deduce that the
outermost constructor must be 8S. But the rule SStructural is
also somewhat disappointing: It does not impose any restric-
tion on the type of the term that 8S is applied to. This is why
a term like 8S(True) is typeable with this rule.
Similar to how the typing rules for constructors re�ect

the constructor used to construct the term in the type, the
rule for pattern matches re�ects the constructors which are
matched against. For example, a pattern match which only
matches against the constructor 8S is typed as follows:

� ` 4 : h 8S(g) i �, G : g ` 4(: d
C���(Structural� ` case 4 of {8S(G)) 4(} : d

In this rule we don’t require 4 to be a natural number. We
only place the minimal requirement on the type 4 , namely
to be wrapped with the constructor 8S.
So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for
zero and the successor look as follows:

ZRe�nement
� ` / : h N | / i

� ` 4 : f f <: `U .h N | / , ((U) i SRe�nement
� ` ((4) : h N | ((f) i

In the typing rule SRe�nement we have combined the prop-
erties of both systems. In the conclusion of the rule, we can
still deduce from the type hN | ((f) i which constructor was
used to build the term. And in the second premise we still put
a constraint on the permissible arguments of (, namely that
the argument to (must be some subtype of the Peano natural
numbers, i.e. a re�nement of N. The situation is similar in
the case of pattern matches:

17

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

h N | ; i <: g <: `U .h N | / , ((U) i
� ` 4 : h N | ((g) i
�, G : g ` 4(: d C���(Re�nement� ` case 4 of {((G)) 4(} : d

We require the term 4 to be of type h N | ((g) i, since we
only match against the successor constructor. But we also
require the argument of (to be some natural number, which
we express here with a lower and an upper bound on g . We
might learn more about the requirements that g must satisfy
in the body 4(, for example that g must be non-zero, too.

2.2 Lists
In the previous section we used the example of natural num-
bers, whose de�nition in the formal syntax of Section 3 will
look like this:

data Nat : (;) ! ⇤ { / () : Nat(;), ((rec@(;)) : Nat(;) }

After the name of the type constructor Nat we have to specify
its kind. Since natural numbers are not parameterized, the
kind is simply (;) ! ⇤, which is isomorphic to the kind ⇤ of
inhabited types. The recursive occurrence in the argument
of the constructor (is written using the special rec symbol,
which has to be applied to zero type arguments, using the
syntax rec@(;). This syntax makes more sense once we see
the de�nition of a parameterized type. The type of lists of
some element type U is de�ned as follows:

data List : (⇤;) ! ⇤ {
8U .Nil() : List(U ;),
8U .Cons(U, rec@(U ;)) : List(U ;) }

This de�nition introduces the type constructor List of kind
(⇤;) ! ⇤. In the algebraic subtyping system we have to keep
covariant and contravariant parameters of a type strictly sep-
arate. The element type of a list is a covariant argument, and
covariant arguments are written to the left of the semicolon
in the kind of List.
There is one central design question concerning parame-

terized types like lists. The problem can be illustrated with
the list Cons(True, Cons(False, Nil)). What should be the
type of this list? As we see it, there are two possible choices:

1. We infer the re�nement as if the programmer had
written a data type declaration of lists of booleans.
We call this the monomorphising approach. With this
approach, we infer the type of a two-element list which
contains the term True at the �rst position and the
term False at the second position.

2. We infer separate re�nements for the spine of the list
and the elements of the list. Using this approach, we
infer the type of a two element list (that is, a re�nement
on lists) whose elements are among the set containing
both True and False (that is, a re�nement of booleans).

On a technical level, this corresponds to introducing
a single uni�cation variable for all of the elements of
the list.

The types that are inferred using the �rst approach are more
precise, but this precision comes at a cost. Type inference
has to keep track of a lot more information, making it much
harder to scale to realistic programs. Secondly, the inferred
types are much harder to decipher for the user, and the
approach is overall less modular. For these reasons we have
decided to specify and implement the second approach.

An example for functions on lists can be found in Figure 1.
Note that all type annotations in Figure 1 are not necessary,
but they are checked can be used as documentation. The
mapNonEmpty function operates on the type NonEmpty of
non-empty lists, which is a subtype of the type FullList
of list of arbitrary length. This illustrates how we can keep
reasoning about the shape of the list separate from reason-
ing about the lists contents: mapNonEmpty keeps track of the
shape and allows us to recover the shape of the input in the
output, while at the same time remaining parametric over
the types of the elements of the lists involved. This allows us
to use its output as an input to the max function. At the same
time, we would still be able to use its output in any para-
metric function on lists like a listLength function since
NonEmpty is a subtype of FullList.

2.3 The Expressivity of Structural Re�nement Types
How expressive are the structural re�nement types that we
present here? In their paper, Freeman and Pfenning [6] al-
ready made the observation that they can only express re-
�nements that correspond to a regular sublanguage of the
original type, and we have the same restriction in our system.
For example, it is possible to express the re�nement type of
even natural numbers, but it is not possible to express the
re�nement type of natural numbers that are prime.
This restriction of the expressive power is essential in

several di�erent respects. The favorable closure properties
of regular languages are crucial when we compute and sim-
plify unions and intersections of re�nement types. The close
correspondence between types and �nite automata, which
explains the restriction to regular sublanguages, is also the
basis of the simpli�cation algorithms described by Dolan [3],
which we modify for our purposes in Section 4.4.

3 Formalization
In this section we describe the declarative type system; the
type inference algorithm will then be described in Section 4.
We introduce terms in Section 3.1, kinds in Section 3.2 and
most types in Section 3.3. We introduce the syntax and rules
of structural re�nement types in Section 3.4. We use the
notation 4 to denote a (possibly empty) list of elements 4 ,
following the conventions of Igarashi et al. [10].

18

18

What will you find in the paper?

19

Parameterized Types
How should we refine parameterized type

20

[𝚝𝚛𝚞𝚎, "hello tyde"]

Parameterized Types
How should we refine parameterized type

20

[𝚝𝚛𝚞𝚎, "hello tyde"]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [𝔹, 𝚂𝚝𝚛𝚒𝚗𝚐]

Parameterized Types
How should we refine parameterized type

20

[𝚝𝚛𝚞𝚎, "hello tyde"]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [𝔹, 𝚂𝚝𝚛𝚒𝚗𝚐]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [_, _]@(𝔹 ∨ 𝚂𝚝𝚛𝚒𝚗𝚐)

Parameterized Types
How should we refine parameterized type

21

[𝚝𝚛𝚞𝚎, "hello tyde"]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [𝔹, 𝚂𝚝𝚛𝚒𝚗𝚐]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [_, _]@(𝔹 ∨ 𝚂𝚝𝚛𝚒𝚗𝚐)

Parameterized Types
How should we refine parameterized type

22

[𝚝𝚛𝚞𝚎, "hello tyde"]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [𝔹, 𝚂𝚝𝚛𝚒𝚗𝚐]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [_, _]@(𝔹 ∨ 𝚂𝚝𝚛𝚒𝚗𝚐)

Parameterized Types
How should we refine parameterized type

23

[𝚝𝚛𝚞𝚎, "hello tyde"]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [𝔹, 𝚂𝚝𝚛𝚒𝚗𝚐]

[𝚝𝚛𝚞𝚎, "hello tyde"] : [_, _]@(𝔹 ∨ 𝚂𝚝𝚛𝚒𝚗𝚐)

Technical details

24

Technical details

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

24

Technical details

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

24

Technical details

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

@(;)

h List(U ;) | Cons(_, _) i h Bool | True i

U _@(_;)

h List(V ;) | Nil i U

•@(_;) _@(•;)

Cons(•, _) Cons(_, •)

•@(_;) _@(•;)

Figure 15. Type automaton for type of one-element Bool list
h List(U ;) | Cons(U, h List(V ;) | Nil i@(U ;)) i@(h Bool | True i;)

and Dolan and Mycroft [4]. Algebraic subtyping is the cen-
tral foundation on which our paper builds. We have also
pro�ted from the presentation of the underlying algorithm
and ideas of the algebraic subtyping approach by Parreaux
[14]. Parreaux and Chau [15] have recently been working
on extending the algebraic subtyping approach by lifting the
polarity restriction and allowing unions and intersections in
arbitary positions in types. We plan to investigate the possi-
ble interaction of their extended system with our structural
re�nement types in future work.
Polymorphic variants: The algebraic subtyping approach

is, in general, not particularly concerned with the concrete
types available in the system, only with the algebraic prop-
erties of the subtyping lattice. For example, [3, 4] illustrate
their approach with a system which only contains booleans,
functions and records. In this paper we study the combina-
tion of ordinary algebraic data types, which all languages
in the ML lineage support, with polymorphic variants. Poly-
morphic variants [7, 8] allow to program with the familiar
tools of functional programming: building up data with con-
structors and decomposing with pattern matching. But they
don’t require the programmer to declare the data types and
their constructors in advance. Structural re�nement types
combine the typing rules for algebraic data types with the
typing rules of polymorphic variants.

Record subtyping and codata types: There is a well-known
duality between data types and codata types [1, 5, 9, 17]. A
special instance of this duality is the duality of polymorphic
variants and extensible records [8]. In fact, we have devel-
oped and implemented the ideas presented in this paper in
the more general context of algebraic data and codata types.
We have specialized the formalization to data types and poly-
morphic variants in order to simplify the presentation, but
the extension to the more general setting is straightforward.
Re�nement types: Re�nement types in our sense were

introduced in a seminal paper by Freeman and Pfenning

[6]. They conceive of re�nement types as abstract domains,
which have to be manually speci�ed by the programmer in
advance. They require a �nite number of re�nement types
in order to keep type inference decidable within the inter-
section type system they use.
Another recent system with a very similar aim are the

intensional re�nement types of Jones and Ramsay [12]. In
distinction to our system, they can only express the complete
absence of a constructor in a re�nement type. For example,
they cannot express the type of nonempty lists, since that
type requires to exclude the nil constructor only as the
outermost constructor. A huge bene�t of their paper, on the
other hand, is the detailed study of the computational cost
of tracking type re�nements. We have not yet attempted
to characterize the computational cost of our re�nements
theoretically or empirically.

Variance of type parameters The idea of co- and contravari-
ant type parameters has been explored in-depth in the litera-
ture on object-oriented subtyping [11]. A signi�cant trade-o�
in the design of a variance mechanism is the di�erence be-
tween use-site and de�nition-site variance [2]. With regard
to this distinction, structural re�nement types as presented
here o�er de�nition-site variance.

6 Future Work
We have implemented the re�nement types described in this
paper in the D�� language, and we plan to provide both a
theoretical and empirical evaluation of that system. We plan
to provide proofs of the soundness of the system as well as
the principal types property in the future. We conjecture that
it is relatively straight-forward to modify the existing proofs
provided by Dolan [3] and Parreaux [14]. For an empirical
validation we plan to implement larger case studies which
can help evaluate whether the expressivity of the re�nement
types is useful in practice, and whether the type inference
algorithm scales well with larger programs.

7 Discussion
We have presented a type inference algorithm for structural
re�nement types, which combines properties of both alge-
braic data types and polymorphic variants. These novel types
allow us to express re�nements on algebraic data typeswhich
correspond to regular sublanguages. In contrast to other
re�nement type systems, our approach uses only familiar
techniques from constraint based type inference. As a result,
the addition of these types to a language which already im-
plements the algebraic subtyping approach is comparatively
simple. We have implemented structural re�nement types in
the D�� language5.

5Publically available at github.com/duo-lang.

26

24

Technical details

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

Constraint generation: � Ì 4 : g { ⌅

�(G) = g
G�V��

� Ì G : g { ;
�, G : V? Ì 4 : g { ⌅ Fresh (V?)

G�L��
� Ì _G .4 : V? ! g { ⌅

� Ì 41 : f1 { ⌅1 � Ì 42 : f2 { ⌅2 Fresh (V?)
G�A��

� Ì 41 42 : V? {
�
f1 <: f2 ! V?

[⌅1 [⌅2

� Ì 4 : g { ⌅ 8U,U 0. C(f) : # (U ;U 0) 2 Ctors Fresh(V?, V 0?)
G�C���

� Ì C(4) : h # (U ;U 0) | C(f) i@(V?; V 0?) {
⇢
g <: JfK># [V?/U, V 0?/U 0]

�
[(–8 ⌅8)

�, G : V? Ì 4 : g { ⌅

� Ì 4 : f { ⌅ Fresh (V?,W?, X?, X 0?)

C(V?) ~# C(f [X?/U, X 0?/U 0]) { ⌅~

8U,U 0. C(f) : # (U ;U 0) ✓ Ctors
G�C���

� Ì case 4 of {C(G)) 4} : W? {
n
f <: h # (U ;U 0) | C(f) i@(X?;X 0?), g <: W?,

o
[⌅ [{–8 ⌅8 } [

�–
8 ⌅~,8

G�C�����
C(V?) ~# C(g) {

n
JgK?# <: V? <: JgK>#

o

(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: (⇣ (0

@ 2 20
C����H��

20;@,@B ` 1B ⇣ 20;@B ` 1B
@ 8 20 @ = U? <: f 1B (U?) = ;1B <: U? <: D1B

U����B����
20;@,@B ` 1B ⇣ 20,@; {;1 <: f};12;1B ,@B ` 1B [U? 7! ;1B <: U? <: {D1B,f}]
@ 8 20 @ = f <: U? f 8 T�V�� 1B (U?) = ;1B <: U? <: D1B

L����B����
20;@,@B ` 1B ⇣ 20,@; {f <: D1}D12D1B ,@B ` 1B [U? 7! {f, ;1B} <: U? <: D1B]
@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = @B 0

S��O�
20;@,@B ` 1B ⇣ 20,@;@B 0 ++@B ` 1B

@ 8 20 @ = f1 <: f2 f1 8 T�V�� f2 8 T�V�� Sub(@) = Fail
S��F���

20;@,@B ` 1B ⇣ Fail

(b) The biuni�cation algorithm.

Decomposing non-atomic constraints: Sub(�) : @ ! @/Fail
Sub(g <: >) : ; Sub(? <: f) : ;

Sub(g1 t g2 <: f) : {g1 <: f, g2 <: f} Sub(g <: f1 u f2) : {g <: f1, g <: f2}
Sub(g <: `U .f) :

�
g <: f [`U .f/U]

Sub(`U .g <: f) :

�
g [`U .g/U] <: f

Sub(U <: U) : ;

Sub(f1 ! g1 <: f2 ! g2) : {f2 <: f1, g1 <: g2}
Sub(g@(f ; d) <: g 0@(f 0; d 0)) :

�
g <: g 0,f <: f 0, d 0 <: d

Sub(h # (U ;U 0) | ; i <: h # (V ; V 0) | k i) : ;

Sub(h # (U ;U 0) | C(g),i i <: h # (V ; V 0) | C(f),k i) :
n
g8 <: f8 [U/V]

o
[Sub(h # (U ;U 0) | i i <: h # (V ; V 0) | k i)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.

24

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

@(;)

h List(U ;) | Cons(_, _) i h Bool | True i

U _@(_;)

h List(V ;) | Nil i U

•@(_;) _@(•;)

Cons(•, _) Cons(_, •)

•@(_;) _@(•;)

Figure 15. Type automaton for type of one-element Bool list
h List(U ;) | Cons(U, h List(V ;) | Nil i@(U ;)) i@(h Bool | True i;)

and Dolan and Mycroft [4]. Algebraic subtyping is the cen-
tral foundation on which our paper builds. We have also
pro�ted from the presentation of the underlying algorithm
and ideas of the algebraic subtyping approach by Parreaux
[14]. Parreaux and Chau [15] have recently been working
on extending the algebraic subtyping approach by lifting the
polarity restriction and allowing unions and intersections in
arbitary positions in types. We plan to investigate the possi-
ble interaction of their extended system with our structural
re�nement types in future work.
Polymorphic variants: The algebraic subtyping approach

is, in general, not particularly concerned with the concrete
types available in the system, only with the algebraic prop-
erties of the subtyping lattice. For example, [3, 4] illustrate
their approach with a system which only contains booleans,
functions and records. In this paper we study the combina-
tion of ordinary algebraic data types, which all languages
in the ML lineage support, with polymorphic variants. Poly-
morphic variants [7, 8] allow to program with the familiar
tools of functional programming: building up data with con-
structors and decomposing with pattern matching. But they
don’t require the programmer to declare the data types and
their constructors in advance. Structural re�nement types
combine the typing rules for algebraic data types with the
typing rules of polymorphic variants.

Record subtyping and codata types: There is a well-known
duality between data types and codata types [1, 5, 9, 17]. A
special instance of this duality is the duality of polymorphic
variants and extensible records [8]. In fact, we have devel-
oped and implemented the ideas presented in this paper in
the more general context of algebraic data and codata types.
We have specialized the formalization to data types and poly-
morphic variants in order to simplify the presentation, but
the extension to the more general setting is straightforward.
Re�nement types: Re�nement types in our sense were

introduced in a seminal paper by Freeman and Pfenning

[6]. They conceive of re�nement types as abstract domains,
which have to be manually speci�ed by the programmer in
advance. They require a �nite number of re�nement types
in order to keep type inference decidable within the inter-
section type system they use.
Another recent system with a very similar aim are the

intensional re�nement types of Jones and Ramsay [12]. In
distinction to our system, they can only express the complete
absence of a constructor in a re�nement type. For example,
they cannot express the type of nonempty lists, since that
type requires to exclude the nil constructor only as the
outermost constructor. A huge bene�t of their paper, on the
other hand, is the detailed study of the computational cost
of tracking type re�nements. We have not yet attempted
to characterize the computational cost of our re�nements
theoretically or empirically.

Variance of type parameters The idea of co- and contravari-
ant type parameters has been explored in-depth in the litera-
ture on object-oriented subtyping [11]. A signi�cant trade-o�
in the design of a variance mechanism is the di�erence be-
tween use-site and de�nition-site variance [2]. With regard
to this distinction, structural re�nement types as presented
here o�er de�nition-site variance.

6 Future Work
We have implemented the re�nement types described in this
paper in the D�� language, and we plan to provide both a
theoretical and empirical evaluation of that system. We plan
to provide proofs of the soundness of the system as well as
the principal types property in the future. We conjecture that
it is relatively straight-forward to modify the existing proofs
provided by Dolan [3] and Parreaux [14]. For an empirical
validation we plan to implement larger case studies which
can help evaluate whether the expressivity of the re�nement
types is useful in practice, and whether the type inference
algorithm scales well with larger programs.

7 Discussion
We have presented a type inference algorithm for structural
re�nement types, which combines properties of both alge-
braic data types and polymorphic variants. These novel types
allow us to express re�nements on algebraic data typeswhich
correspond to regular sublanguages. In contrast to other
re�nement type systems, our approach uses only familiar
techniques from constraint based type inference. As a result,
the addition of these types to a language which already im-
plements the algebraic subtyping approach is comparatively
simple. We have implemented structural re�nement types in
the D�� language5.

5Publically available at github.com/duo-lang.

26

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Binder, Ingo Skupin, David Läwen, and Klaus Ostermann

U, V,W, X, d 2 T�V��

f, g F U Skolem variable
| U? Uni�cation variable
| g ! g Function type
| g@(g ;g) Type Application
| g t g | g u g Union, Intersection
| > | ? Top and Bottom
| `U .g Recursive type

� F n | U : ^,� Kind environments
⌃ F n | f <: g, ⌃ | ù (f <: g), ⌃ Hypotheses context

Figure 4. Syntax of types for the core system.

Kinding rules: � ` g : ^

�(U) : ^
K�V��

� ` U : ^
�,U : ^ ` g : ^

K�M�
� ` `U .g : ^

K�T��
� ` > : ^ K�B��

� ` ? : ^
� ` f : ^ � ` g : ^ K�U����

� ` f t g : ^
� ` f : ^ � ` g : ^ K�I����

� ` f u g : ^
� ` f : ⇤ � ` g : ⇤ K�F��

� ` f ! g : ⇤
� ` f : (^;^ 0) ! ⇤ � ` g : ^ � ` g 0 : ^ 0

K�T�A��
� ` f@(g ;g 0) : ⇤
� ` g : (;) ! ⇤

K�S���
� ` g : ⇤

Figure 5. Kinding rules.

to talk about the union of the type constructors of lists and
non-empty lists. The K�S��� rule witnesses the fact that a
higher order kind with no parameters is the same as kind ⇤.
The declarative typing rules for the core system are pre-

sented in Figure 6. The presentation of these rules is adapted
from that in [14]. The judgement � ` 4 : g states that the ex-
pression 4 has type g in the variable context � which assigns
types to term variables. Note that in this form the rule T�S��
is not syntax directed, since it allows to change the type of
an expression at an arbitrary point in a typing derivation.

The last set of rules concern the formalization of the sub-
typing lattice, and are presented in Figure 7. The judgement
⌃ ` f <: g says that f is a subtype of g under the assump-
tion that the hypotheses in ⌃ hold. There are two di�erent
kinds of hypotheses, guarded hypotheses ù(f <: g) and un-
guarded hypotheses f <: g . Unguarded hypotheses can be
used directly using the rule S�H��, but guarded hypothe-
ses must �rst be unlocked with the û operation before they
can be used. Hypotheses are unguarded every time we pass

Typing rules: � ` 4 : g

�(G) = g
T�V��

� ` G : g
� ` 41 : f ! g � ` 42 : f T�A��

� ` 41 42 : g
�, G : f ` 4 : g

T�L��
� ` _G .4 : f ! g

� ` 4 : f f <: g T�S��
� ` 4 : g

Figure 6. Declarative typing rules

a type constructor in the rule S�F��. The additional com-
plication of hypotheses contexts is necessary for the cor-
rect treatment of recursive types. Without them, we would
not be able to determine that `U .Bool ! U is a subtype of
`U .Bool ! Bool ! U , even though they have the same
in�nite unfolding. This example is well-explained in [14].

Subtyping rules: ⌃ ` f <: g

S�R���` g <: g
� 2 ⌃ S�H��
⌃ ` �

⌃, ù� ` �
S�A����

⌃ ` �
` � S�W�����
⌃ ` � S�T��` g <: > S�B��` ? <: g

⌃ ` g <: g 0 ⌃ ` g 0 <: g 00 S�T����
⌃ ` g <: g 00

û⌃ ` f 0 <: f û⌃ ` g <: g 0 S�F��
⌃ ` f ! g <: f 0 ! g 0

⌃ ` g <: g 0 ⌃ ` f <: f 0 ⌃ ` d 0 <: d
S�A��

⌃ ` g@(f ; d) <: g 0@(f 0; d 0)
8998 : ⌃ ` g8 <: f 9

S�M���⌃ ` u8g8 <: u9f 9

889 9 : ⌃ ` g8 <: f 9 S�J���
⌃ ` t8g8 <: t9f 9

S�`�R
⌃ ` g [`d .g/d] <: `d .g

S�`�L
⌃ ` `d .g <: g [`d .g/d]

where
û⌃ = û⌃ û(ù�) = �

û(g <: f) = g <: f

Figure 7. Declarative subtyping rules

3.4 Structural Re�nement Types
We now extend the system with user de�ned data types,
which are speci�ed in Figure 8. A program contains a set of
data type declarations of the form data# : (^;^ 0) ! ⇤ { 2C },
which introduce a new algebraic data type # with kind
(^;^ 0) ! ⇤ whose name is taken from the set T�N���,
together with its constructors 2C . For example, the type of

20

24

Takeaways

25

Takeaways

• Easy to implement if you already use algebraic subtyping.

25

Takeaways

• Easy to implement if you already use algebraic subtyping.

• Expressive enough for many interesting use cases.

25

Takeaways

• Easy to implement if you already use algebraic subtyping.

• Expressive enough for many interesting use cases.

• Does not require anything but familiar type inference machinery.

25

What remains to be done?

26

Future work

27

Future work

• Develop formal metatheory.

27

Future work

• Develop formal metatheory.

• Investigate expressivity.

27

Future work

• Develop formal metatheory.

• Investigate expressivity.

• Larger case studies.

27

Future work

• Develop formal metatheory.

• Investigate expressivity.

• Larger case studies.

• Usability engineering.

27

That was my presentation.

28

What do you want to know?

29

