Can functional programming be
liberated from the natural
deduction style?

David Binder / Proofs, Computation and Meaning / 2022 Online

How does the choice of a logical
calculus influence programming style?

We shall use Church’s method tor denoting definitions (see Church 1932, p.
355) and shall list the following, giving on the right the equivalent in Church’s
notation:

T— JII zzf - f(z) (See footnote 4)
C—JIUTNJT) Nzy-f(y,)

B — CWJIC)(JI) Nz -f(9(z))

W — C(C(BC(C(BJT)T))T) Nz f(z, z)

1 — BI Nz-f(z)

p X q— Bpq Az-p(q(z))

‘2\zf-f(z) is an abbreviation of AzAf-f(z).

Wadler's Dual Calculus

Terms in the dual calculus are not always easy to read.
Compare, for instance, the A-calculus term

(fst V,snd M)

with a corresponding dual calculus term,

(V e fst|x.(V esnd|y.(v e (x,y))])]).7

The latter is reminiscent of continuation-passing style — like
the Pompidou Center in Paris, the plumbing is exposed on
che outside. While this can make the expression harder on
the eyes, it also — like CPS, and like the Pompidou Center
— has the advantage of revealing structure that previously
was hidden.

Overview

1. Current State:
Functional programming based on Curry-Howard for natural deduction.

2. What can we hope to gain:
What are the limitations of (intuitionistic) natural deduction”? What can the

(classical) sequent calculus contribute?

3. A Vision:
Programming in the sequent calculus. (With real code examples!)

Goal: Make you understand why PL
researchers might be interested In using
sequent calculus as a programming language.

The Current State

The current state

The Curry-Howard Isomorphism permeates theory and practice of FP.

 Programmers: Programmers use functional programming languages closely
modelled upon Church's A-calculus.

 Compiler implementors: Optimization and implementation are studied using
intermediate representations based on, and abstract machines for the lambda

calculus.

 PL researchers: The percentage of papers containing some version of the

following rule is very high: rz:rFe:

[\ :Te:7— 7/

Programming in natural deduction style

¢ \ ' '
1 ' 1 |
b i ‘ |

swapAnd :: (a,b) —> (b,a)
swapAnd = \x -> case x of (a,b) —> (b,a)

swapOr :: Either a b —> Either b a
swapOr = \x —> case x of { Left a —> Right a; Left b —> Right b }

What Is distinctive about this
programming style, I.e. intuitionistic
natural deduction?

Properties of Natural Deduction

* There is only ever one formula on the right of the turnstile.

* There is only one judgement form I F ¢ : 7 which types proofs of a type.
= Refutations (resp. consumers/continuations) are not first class.

* Rules only operate on the right hand side of the sequent.
= No rules for formulas on the left of the turnstile.

 Rules come in introduction (e.g. Ax . €) and elimination forms (e.g. (f a)).

 Computation happens when introduction and elimination forms interact.
—Cut is internalized.

Collectively, these properties determine the programming style!

11

The sequent calculus

Natural Deduction vs Sequent Calculus

ND: There is only one formula on the RHS

In natural deduction we have I - ¢ , in sequent calculus I - A.
 There is more than one point that we can return to.

» Alternatively: We have multiple continuations in context.

public static int foo(float x, String y) throws IOException {

}

We should read this Java example as: float, String I int, IOException

13

Natural Deduction vs. Sequent Calculus

ND: There is only one judgement form

A judgement for well-typed proofs/producers: I'Fe:p|A
» A judgement for well-typed refutations/consumers: ['le:9p A
A judgement for well-typed commands: c:(I'F A)

def prd foo = ...;

adet cns

W - .
ol cmo
N S - -

Natural Deduction vs. Sequent Calculus
ND: Rules only operate on the RHS.

Vi,c; : (I, x; : T; v A) F're:T; | A
(R-®-INTRO;)
['| Match {In; x; > ¢;} : 1 ® T, F A 'tInje: 1 @1 | A
(L-®-INTRO)
'te: 17T, | A
I‘|f:T169T2|—A ‘v’i,c,-:(I‘,x,-:”.I",-—A)
(L--ELim;) (R-®-EL1Mm)

['|Out; f:T; A Casee {In; x; — ¢;} : (T' + A)

15

Natural Deduction vs. Sequent Calculus

ND: Computation happens where introduction and elimination meet.

In sequent calculus, computation happens at a cut, where a producer
and a consumer of the same type meet.

'te:T|A .
T ‘f T E A | :’_‘:I:.:_ prd foo : T i= ...;

<e H f> . r - A (CUT) . d cns bar : T 1= ...}

def cmd biz := foo >> bar:

16

RQ1: Evaluation Order

 Sequent calculus is an excellent tool for studying evaluation orders.
» The critical pair (¢x . c, | fia . ¢;) can be reduced in two different ways.
» Call-by-value: Reduce the p-abstraction.

 (Call-by-name: Reduce the pi-abstraction.
* Mixing evaluation orders using Shift connectives.

* |n sequent calculus, call-by-need dualizes to call-by-coneed. Useful?

17

RQ2: Data vs. Codata

 Data and Codata types are the two ways to introduce new types.
* Corresponds to polarity in linear logic.

* |n sequent calculus, data and codata types are more symmetric:
* ND: Constructors are first class, destructors are not first class.

 ND: Destructors of codata types have one "output” type. Constructors of
data types don't.

 ND: We cannot define all the connectives from linear logic.

18

RQ3: Sequent Calculus as an Intermediate Language

Sequent Calculus as a Compiler Intermediate Language

Paul Downen Luke Maurer Simon Peyton Jones
Zena M. Ariola Microsoft Research Cambridge, UK

University of Oregon, USA simonpj@microsoft.com

{pdownen,maurerl,ariola}@cs.uoregon.edu

* Reduction in sequent calculus is already like in an abstract machine.

(Ax-a).cl|lo-f) > ci{x:=o,a:=f}
(Inj o || Match {In; x; = ¢;}) »p cj{x; =0}
([01,02] || Match {[x,y]| — c}) >B c{x =01,y =03}

 Many optimizations (e.g. case-of-case) are simple reductions.

» Helped discover the concept of join points (~ ¢-nodes).

» Jarget language for language features which need first-class continuations
(effect systems, coroutines, exceptions).

19

RQ4: What algorithms are naturally expressed in SQ

* The operational essence of classical logic are control operators: a functional
goto.

* There are two ways to write programs using control effects: control operators
or in continuation-passing-style (CPS).

 Both ways are difficult to read and to reason about.

 Can we express these algorithms more modularily, comprehensibly, extensibly
using sequent calculus?

20

Programming in the Sequent
Calculus

Positive Products

FI—BZT1®T2|A

c:(x:T,y: T, T +A) c:(x:T,y: T, T+A) c:(T'rta:T,A)
(R-®-ELIM) (R-p)
Casee {[x,y] — c}: (I +A) [| Match {|[x,y] —c}: I T, F A I'Fpuac:T|A

(L-®-INTRO)

data Tensor : (a : %, b : %) — x {
MkTensor(a, b)
i

def prd fst := \p => case p of { MkTensor(x,y) => x};
def prd snd := \p => mu k. p >> case { MkTensor(x,y) => y >> k };

22

Positive Sums

r F e : Tl & TZ ‘ A
Vi,ci: (I,x; : T + A) 00
(R-@-ELim)

Casee {In; x; — ¢;} : (T + A) 1 data Plus : (a : %, b :
‘ Left(a),
Right(b)

F'rFe:T; | A L };
(R-®-INTRO;) :
[FInje:T1®T; | A

def prd swap :=
\x => case X of { Left(x) => Right(x)
, Right(y) => Left(y)
b

23

Negative Products

codata With : (a 2 %, b : %) —> % {
Projl{(return a),
Proj2(return b)

b

def prd pair := \x y => cocase { Projl(k) => x >>
, Proj2(k) ==y >>
5

24

Negative Pairs

codata Par : (a : %, b : %) —> % {
MkPar(return a, return b)

i

def prd ret := \x => cocase { MkPar(k_err, k_res) => x >> k_res };
def prd throw := \x => cocase { MkPar(k_err, k_res) => x >> k_err };

public static int foo(float x, String y) throws IOException {

def rec prd filter : forall a. (a —> Bool) —> List(a) —> List(a) :=

\f Xs => case xs of
Nil => Nil,
Cons(y, ys) => case (f y) of {
True => Cons(y, filter f ys),
False => filter f ys

The implementation is not optimal. The list is copied In memory
even If all elements satisfy the predicate.

26

Parsimonious Filter

def rec prd filterHelper := \p 1 => case 1 of {
Nil => cocase {
MkPar(kl,x*) => MkUnit
¥
Cons(x,xs) => case p x of {
True =>
cocase {
MkPar(kl,k2) =>
filterHelper p xs >> MkPar(mu ys. Cons(x,ys) >> k1, k2)
}I
False =>
cocase {
MkPar(kl,k2) =>
filterHelper p xs >> MkPar(kl, mu y. xs >> k1)

ef prd filter :=\p 1l => mu k. filterHelper p 1 >> MkPar(k, mu y. 1 >> k);

(Cp. Shivers & Fisher: Multi Return Function Calls)

27

A more general problem: The
space of programming styles.

What if we mix rules?

Vi,c; : (I, x; : T; A) F'rte:T; | A
(R-®-INTRO;)
F|Match{lnix,-Hc,-}:Tl@Tgl—A rl—Inie:Tl@TZ‘A
(L-&-INTRO)
I'te:T1 T, | A
I 1T, A Vi,c; : (I,x; : T, F A
S Lot (L-®-EL1Mm;) ML) (R-®-ELIM)

I'|Out; f:T; A Casee {In; x; — ¢;} : (T + A)

29

Table 3. Four different ways to swap the components of z: X @ Y and send to consumer a : Y & X.

Calculus Program
Right Casez {In; x » (In; x || a);In, y — (Inq vy || @) }

Intro (z || Match {Iny x — (In, x || a);In, y — (In; y || &) })
Left (z || Match {In; x — (x || Out, a);In, y — (y|| Out; a)})
Elim Case z {In; x — (x || Out; a);In, y — (y|| Out; @)}

def prd right : forall a. (Unit & a) & a —> Plus(Unit,Plus(Plus(a,Unit),Unit)) :=
cocase { Ap(x,k) => Right(Left(Left(x.Projl(x).Proj2(x)))) >> k };

def prd intro : forall a. (Unit & a) & a —> Plus(Unit,Plus(Plus(a,Unit),Unit)) :=
cocase { Ap(x,k) == x >> Projl(Proj2(mu y. Right(Left(Left(y))) >> kK))} ;

def prd left : forall a. (Unit & a) & a —> Plus(Unit,Plus(Plus(a,Unit),Unit)) :=
cocase { Ap(x,k) == x >> Projl(Proj2(Left(x) ;; Left(x) ;; Right(x) ;; k))} ;

def prd elim : forall a. (Unit & a) & a —> Plus(Unit,Plus(Plus(a,Unit),Unit)) :=
cocase { Ap(x,k) => x.Projl(x).Proj2(x) >> Left(x) ;; Left(x) ;; Right(x) ;; k } ;

30

More Info

* Introduction and Elimination,
Left and Right
dl.acm.org/dol/
10.1145/3547637

» github.com/duo-lang

31

Introduction and Elimination, Left and Right

KLAUS OSTERMANN, University of Tiibingen, Germany
DAVID BINDER, University of Titbingen, Germany

INGO SKUPIN, University of Tiibingen, Germany

TIM SUBERKRUB, University of Tiibingen, Germany
PAUL DOWNEN, University of Massachusetts Lowell, USA

Functional programming language design has been shaped by the framework of natural deduction, in which
language constructs are divided into introduction and elimination rules for producers of values. In sequent
calculus-based languages, left introduction rules replace (right) elimination rules and provide a dedicated
sublanguage for consumers of values. In this paper, we present and analyze a wider design space of programming
languages which encompasses four kinds of rules: Introduction and elimination, both left and right. We
analyze the influence of rule choice on program structure and argue that having all kinds of rules enriches a
programmer’s modularity arsenal. In particular, we identify four ways of adhering to the principle that "the
structure of the program follows the structure of the data” and show that they correspond to the four possible
choices of rules. We also propose the principle of bi-expressibility to guide and validate the design of rules
for a connective. Finally, we deepen the well-known dualities between different connectives by means of the
proof/refutation duality.

CCS Concepts: « Theory of computation — Abstract machines; Lambda calculus; Type theory; Proof theory;
Linear logic.

Additional Key Words and Phrases: Duality, Sequent Calculus, Natural Deduction

ACM Reference Format:

Klaus Ostermann, David Binder, Ingo Skupin, Tim Siiberkriib, and Paul Downen. 2022. Introduction and
Elimination, Left and Right. Proc. ACM Program. Lang. 6, ICFP, Article 106 (August 2022), 28 pages. https:
//doi.org/10.1145/3547637

1 INTRODUCTION

Undoubtedly, the A-calculus has had a profound impact on functional programming: from language
design, to implementation, to practical programming techniques. Through the Curry-Howard
correspondence, we know that the A-calculus — and likewise, A-based functional languages —
are oriented around the interplay between the introduction and elimination rules of types as first
formulated in natural deduction (ND). This natural deduction style of programming nicely allows
for a quite “natural” way of combining sub-problems in programs, like basic operations of function
composition f (g x) and swapping the pair x as (Snd x, Fst x). The natural compositional style is
afforded by the fact that all expressions in the A-calculus produce exactly one result that is implicitly
taken by exactly one consumer: namely, the enclosing context of that expression. While the single
implicit consumer is natural for composition, it can be rather unnatural if we ever want to work

Authors’ addresses: Klaus Ostermann, University of Tiibingen, Germany, klaus.ostermann@uni-tuebingen.de; David
Binder, University of Tiibingen, Germany, david.binder@uni-tuebingen.de; Ingo Skupin, University of Tiibingen, Germany,
skupin@informatik.uni-tuebingen.de; Tim Stiberkriib, University of Tiibingen, Germany, tim.sueberkrueb@student.uni-
tuebingen.de; Paul Downen, University of Massachusetts Lowell, USA, Paul_Downen@uml.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART106
https://doi.org/10.1145/3547637

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

http://dl.acm.org/doi/10.1145/3547637
http://dl.acm.org/doi/10.1145/3547637
http://github.com/duo-lang

Thank you for your attention

