
David Binder / Proofs, Computation and Meaning / 2022 Online

Can functional programming be
liberated from the natural
deduction style?
Programming in the Sequent Calculus

1

How does the choice of a logical
calculus influence programming style?

2

3

Wadler's Dual Calculus

7. CONCLUSIONS
Here is a speculation about one possible application of

these ideas. Call-by-name can be ine�cient because a single
term may be evaluated many times. Call-by-need avoids
this ine�ciency by overwriting a term with its value the
first time it is evaluated.

Similarly, in the dual calculus it becomes clear that call-
by-value can be ine�cient because a single coterm may be
evaluated many times. A strategy dual to call-by-need could
avoid this ine�ciency by overwriting a coterm with its cov-
alue the first time it is evaluated.

Terms in the dual calculus are not always easy to read.
Compare, for instance, the �-calculus term

hfst V, snd Mi

with a corresponding dual calculus term,

(V • fst[x.(V • snd[y.(� • hx, yi)])]).�

The latter is reminiscent of continuation-passing style — like
the Pompidou Center in Paris, the plumbing is exposed on
the outside. While this can make the expression harder on
the eyes, it also — like CPS, and like the Pompidou Center
— has the advantage of revealing structure that previously
was hidden.

Call-by-name was introduced in the seminal work of
Church (1932), and call-by-value was introduced in a review
a few years later by Bernays (1936). Almost a half century
passed between the initial publications of Church (1932) and
Gentzen (1935) and their linkage in a publication by Howard
(1980). After a further quarter of a century, an underlying
duality between the two fundamental forms of evaluation
has been revealed. What more will we discover before the
centenary of the birth of �-calculus, natural deduction, and
sequent calculus?

Acknowledgements
Thanks to Pierre-Louis Curien, Olivier Danvy, Tim Gri�n,
Hugo Herbelin, Robert McGrail, Rex Page, Amr Sabry, Pe-
ter Selinger, Ken Shan, and Steve Zdancewic for discussions
on this work.

8. REFERENCES
Zena Ariola and Hugo Herbelin (2003) Minimal
classical logic and control operators. In 30’th
International Colloquium on Automata, Languages and
Programming, Eindhoven, The Netherlands.
F. Barbanera and S. Berardi (1996) A symmetric
lambda calculus for classical program extraction.
Information and Computation, 125(2):103–117.
P. Bernays (1936) Review of “Some Properties of
Conversion” by Alonzo Church and J. B. Rosser.
Journal of Symbolic Logic, 1:74–75.
George Boole (1847) The mathematical analysis of
logic. Macmillan, Barclay, and Macmillan, Cambridge.
Alonzo Church (1932) A set of postulates for the
foundation of logic. Annals of Mathematics,
II.33:346–366.
Alonzo Church (1940) A formulation of the simple
theory of types. Journal of Symbolic Logic, 5:56–68.
P.-L. Curien and H. Herbelin (2000) The duality of
computation. In 5’th International Conference on

Functional Programming, pages 233–243, ACM,
September 2000.
H. B. Curry and R. Feys (1958) Combinatory Logic.
North-Holland (see Chapter 9, Section E).
V. Danos, J-B. Joinet and H. Schellinx (1995)
LKQ and LKT: Sequent calculi for second order logic
based upon linear decomposition of classical implication.
In Advances in Linear Logic, J-Y. Girard, Y Lafont and
L. Regnier editors, London Mathematical Society
Lecture Note Series 222, Cambridge University Press,
pp. 211-224.
N. G. de Bruijn (1968) The mathematical language
Automath, its usage, and some of its extensions. In
Symposium on Automatic Demonstration, Versailles,
1968, pages 29–61. Springer-Verlag, Lecture Notes in
Mathematics 125, 1970.
M. Felleisen, D. Friedman, E. Kohlbecker, and B.
Duba (1986) Reasoning with continuations. In
Proceedings of the First Symposium on Logic in
Computer Science, pages 131–141, IEEE.
Andrzej Filinski (1989) Declarative continuations and
categorical duality. Master’s thesis, University of
Copenhagen, Copenhagen, Denmark, August 1989.
(DIKU Report 89/11.)
Gottlob Frege (1879) Begri↵sschrift,a formula
language, modeled upon that of arithmetic, for pure
thought. Halle. Reprinted in Jan van Heijenoort, editor,
From Frege to Gödel, A Sourcebook in Mathematical
Logic, 1879–1931, Harvard University Press, 1967.
Gerhard Gentzen (1935) Investigations into Logical
Deduction. Mathematische Zeitschrift
39:176–210,405–431. Reprinted in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen,
North-Holland, 1969.
Joseph Diaz Gergonne (1826) Annales de
mathématique pures et appliquées, 16:209.
Timothy Griffin (1990) A formulae-as-types notion of
control. In 17’th Symposium on Principles of
Programming Languages, San Francisco, CA, ACM,
January 1990.
Ivor Grattan Guinness (2000) The Search for
Mathematical Roots 1870–1940. Princeton University
Press.
Hugo Herbelin (1994) A lambda-calculus structure
isomorphic to sequent calculus structure. In Computer
Science Logic, pages 61–75, Springer-Verlag, LNCS 933.
M. Hofmann and T. Streicher (1997) Continuation
models are universal for �µ-calculus. In Proceedings of
the Twelfth Annual IEEE Symposium on Logic in
Computer Science, pages 387–397.
Eugenio Moggi (1988) Computational
lambda-calculus and monads. Technical Report
ECS-LFCS-88-66, Edinburgh University, Department of
Computer Science.
P. H. Nidditch (1969) The Development of
Mathematical Logic. Thoemmes Press, Bristol (reprinted
1998).
C.-H. L. Ong (1996) A semantic view of classical
proofs: Type-theoretic, categorical, and denotational
characterizations. In Proceedings of the Eleventh Annual
IEEE Symposium on Logic in Computer Science, pages
230–241.

4

Overview

1. Current State:  
Functional programming based on Curry-Howard for natural deduction.

2. What can we hope to gain:  
What are the limitations of (intuitionistic) natural deduction? What can the
(classical) sequent calculus contribute?

3. A Vision:  
Programming in the sequent calculus. (With real code examples!)

5

Goal: Make you understand why PL
researchers might be interested in using

sequent calculus as a programming language.

6

The Current State

7

The current state
The Curry-Howard Isomorphism permeates theory and practice of FP.

• Programmers: Programmers use functional programming languages closely
modelled upon Church's λ-calculus.

• Compiler implementors: Optimization and implementation are studied using
intermediate representations based on, and abstract machines for the lambda
calculus.

• PL researchers: The percentage of papers containing some version of the
following rule is very high:

3

#13

Proving Type Soundness

• A typing judgment is either true or false
• Define what it means for a value to have a type

v ∈ ∥ τ ∥
(e.g. 5 ∈ ∥ int ∥ and true ∈ ∥ bool ∥)

• Define what it means for an expression to have a
type

e ∈ | τ | iff ∀v. (e ⇓ v ⇒ v ∈ ∥ τ ∥)
• Prove type soundness

If · ⊢ e : τ then e ∈ | τ |
or equivalently

If · ⊢ e : τ and e ⇓ v then v ∈ ∥ τ ∥

• This implies safe execution (since the result of a
unsafe execution is not in ∥ τ ∥ for any τ)

#14

Upcoming Exciting Episodes

• We will give formal description of first-order type
systems (no type variables)
– Function types (simply typed λ-calculus)
– Simple types (integers and booleans)

– Structured types (products and sums)
– Imperative types (references and exceptions)

– Recursive types

• The type systems of most common languages are
first-order

• The we move to second-order type systems
– Polymorphism and abstract types

#15

Simply-Typed Lambda Calculus

• Syntax:
Terms e ::= x | λx:τ. e | e1 e2

| n | e1 + e2 | iszero e
| true | false | not e
| if e1 then e2 else e3

Types τ ::= int | bool | τ1 → τ2

• τ1 → τ2 is the function type
• → associates to the right
• Arguments have typing annotations
• This language is also called F1

#16

Static Semantics of F1

• The typing judgment

Γ ⊢ e : τ
• Some (simpler) typing rules:

#17

More Static Semantics of F1

#18

Typing Derivation in F1

• Consider the term
λx : int. λb : bool. if b then f x else x

– With the initial typing assignment f : int → int

Where Γ = f : int → int, x : int, b : bool

8

Programming in natural deduction style

9

What is distinctive about this
programming style, i.e. intuitionistic

natural deduction?

10

Properties of Natural Deduction

• There is only ever one formula on the right of the turnstile.

• There is only one judgement form which types proofs of a type. 
Refutations (resp. consumers/continuations) are not first class.

• Rules only operate on the right hand side of the sequent. 
No rules for formulas on the left of the turnstile.

• Rules come in introduction (e.g.) and elimination forms (e.g.).

• Computation happens when introduction and elimination forms interact. 
Cut is internalized.

Γ ⊢ t : τ
⇒

⇒

λx . e (f a)

⇒

Collectively, these properties determine the programming style!

11

The sequent calculus

12

Natural Deduction vs Sequent Calculus
ND: There is only one formula on the RHS

• There is more than one point that we can return to.

• Alternatively: We have multiple continuations in context.

In natural deduction we have , in sequent calculus .Γ ⊢ ϕ Γ ⊢ Δ

We should read this Java example as: float, String ⊢ int, IOException
13

Natural Deduction vs. Sequent Calculus
ND: There is only one judgement form

• A judgement for well-typed proofs/producers:

• A judgement for well-typed refutations/consumers:

• A judgement for well-typed commands:  

Γ ⊢ e : ϕ |Δ

Γ |e : ϕ ⊢ Δ

c : (Γ ⊢ Δ)

14

Natural Deduction vs. Sequent Calculus
ND: Rules only operate on the RHS.

15

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

Natural Deduction vs. Sequent Calculus
ND: Computation happens where introduction and elimination meet.

Introduction and Elimination, Le! and Right 106:7

Syntax

! ! " Types

! $ | %& .' Producers
(! & | %̃$.' Consumers
' ! 〈# | | (〉 Commands
) ! $ Values

E[] ! * Focusing Context
F [] ! * Cofocusing Context

Γ ! $: ! , Γ | * Producer Context
Δ ! & : ! ,Δ | * Consumer Context

Reduction

〈) | | %̃$.'〉 ⊲!̃ '{$:=)}
〈%& .' | | (〉 ⊲! '{& := (}

In + rules, $ is fresh, # ∉) .

〈E[#] | | (〉 ⊲" 〈# | | %̃$.〈E[$] | | (〉〉
〈) | | F [#]〉 ⊲" 〈# | | %̃$.〈) | | F [$]〉〉

Typing rules
$: ! ∈ Γ

Γ $ $: ! | Δ
(R-Var)

& : ! ∈ Δ

Γ | & : ! $ Δ
(L-Var)

' : (Γ $ & : ! ,Δ)

Γ $ %& .' : ! | Δ
(R-%)

' : ($: ! , Γ $ Δ)

Γ | %̃$.' : ! $ Δ
(L-%)

Γ $ # : ! | Δ
Γ | (: ! $ Δ

〈# | | (〉 : Γ $ Δ
(Cut)

Fig. 2. Core language

represent outer nodes of the type structure. In general, introduction rules yield terms nesting
outside-in because the introduced type appears in the conclusion of the rule, while elimination
rules induce an inside-out nesting as the eliminated type occurs in the premise of the rule.
When we use elimination forms on the left to introduce a type on the right or vice-versa

we therefore reverse the nesting structure of the program and thereby also alter its modularity
properties.

Consider the programs in Table 2 again. In the right calculus row, we destruct $ inside-out with
right elimination rules and then construct a producer with the type required by & outside-in using
right introduction rules. The situation is reversed in the left calculus row. Here we destruct the
continuation & inside-out with left elimination rules and construct a continuation with the type
required by $ outside-in using left introduction rules. Similarly, we can get any other combination
of nesting orders by choosing one of the other calculi.
To summarize, having a choice of all four kinds of rules makes it easier for the programmer

to choose a program structure that has the desired modularity and extensibility properties and
maximizes the usage of implicit producers/consumers to avoid the naming of intermediate results
and the associated CPS-like program structure.

3 INTRODUCTION VERSUS ELIMINATION, LEFT VERSUS RIGHT

In this and the next section, we present our language framework, divided into logical steps and
parts. As the !rst step, we present a core language of inputs, outputs, and interactions, without any
logical connectives4 (Figure 2).
As usual in presentations of computational sequent calculi, we have three kinds of sequents:

Γ $ # : ! | Δ describes a producer term # that produces an output of type ! in variable context Γ
and covariable context Δ. Symmetrically, Γ | (: ! $ Δ describes a consumer term (that consumes

4The core is similar to the presentation in Sec. 4 of Downen and Ariola [2018]

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

In sequent calculus, computation happens at a cut, where a producer
and a consumer of the same type meet.

16

RQ1: Evaluation Order

• Sequent calculus is an excellent tool for studying evaluation orders.

• The critical pair can be reduced in two different ways.

• Call-by-value: Reduce the -abstraction.

• Call-by-name: Reduce the -abstraction.

• Mixing evaluation orders using Shift connectives.

• In sequent calculus, call-by-need dualizes to call-by-coneed. Useful?

⟨μx . c1 | μ̃α . c2⟩

μ

μ̃

17

RQ2: Data vs. Codata

• Data and Codata types are the two ways to introduce new types.

• Corresponds to polarity in linear logic.

• In sequent calculus, data and codata types are more symmetric:

• ND: Constructors are first class, destructors are not first class.

• ND: Destructors of codata types have one "output" type. Constructors of
data types don't.

• ND: We cannot define all the connectives from linear logic.

18

RQ3: Sequent Calculus as an Intermediate Language

• Reduction in sequent calculus is already like in an abstract machine. 
 
 

• Many optimizations (e.g. case-of-case) are simple reductions.

• Helped discover the concept of join points (-nodes).

• Target language for language features which need first-class continuations
(effect systems, coroutines, exceptions).

∼ ϕ

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

Sequent Calculus as a Compiler Intermediate Language

Paul Downen Luke Maurer
Zena M. Ariola

University of Oregon, USA
{pdownen,maurerl,ariola}@cs.uoregon.edu

Simon Peyton Jones
Microsoft Research Cambridge, UK

simonpj@microsoft.com

Abstract
The �-calculus is popular as an intermediate language for practical
compilers. But in the world of logic it has a lesser-known twin,
born at the same time, called the sequent calculus. Perhaps that
would make for a good intermediate language, too? To explore
this question we designed Sequent Core, a practically-oriented core
calculus based on the sequent calculus, and used it to re-implement
a substantial chunk of the Glasgow Haskell Compiler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Intermediate representations; Natural deduction; Se-
quent calculus; Compiler optimizations; Continuations; Haskell

1. Introduction
Steele and Sussman’s “Lambda the ultimate” papers [41, 42] per-
suasively argued that the �-calculus is far more than a theoretical
model of computation: it is an incredibly expressive and practical
intermediate language for a compiler. The Rabbit compiler [40],
its successors (e.g. Orbit [21]), and Appel’s book “Compiling with
continuations” [1] all demonstrate the power and utility of the �-
calculus as a compiler’s intermediate language.

The typed �-calculus arises canonically as the term language
for a logic called natural deduction [14], using the Curry-Howard
isomorphism [45]: the pervasive connection between logic and
programming languages asserting that propositions are types and
proofs are programs. Indeed, for many people, the �-calculus is the
living embodiment of Curry-Howard.

But natural deduction is not the only logic! Conspicuously,
natural deduction has a twin, born in the very same paper [14], called
the sequent calculus. Thanks to the Curry-Howard isomorphism,
terms of the sequent calculus can also be seen as a programming
language [9, 15, 44] with an emphasis on control flow.

This raises an obvious question: does the language of the sequent
calculus have merit as a practical compiler intermediate language,
in the same way that the �-calculus does? What advantages and
disadvantages might it have, compared to the existing �-based
technology? Curiously, we seem to be the first to address these

questions, and surprisingly the task was not as routine as we had
expected. Specifically, our contributions are these:

• We describe a typed sequent calculus called Sequent Core with
the same expressiveness as System F!, including let, algebraic
data types, and case (Section 2).
The broad outline of the language is determined by the logic,
but we made numerous choices driven by its role as a compiler
intermediate representation (Section 2.2).

• Our language comes equipped with an operational semantics
(Section 2.3), a type system (Section 2.4), and standard meta-
theoretical properties. We also give direct-style translations to
and from System F! (Section 3).1

• The proof of the pudding is in the eating. We have implemented
our intermediate language as a plugin2 for GHC, a state-of-
the-art optimizing compiler for Haskell (Section 4). GHC’s
intermediate language, called Core, is essentially System F!;
our new plugin translates Core programs into Sequent Core,
optimizes them, and translates them back. Moreover, we have re-
implemented some of GHC’s Core-to-Core optimization passes,
notably the simplifier, to instead use Sequent Core.

• From the implementation, we found a way that Sequent Core
was qualitatively better than Core for optimization: the treatment
of join points. Specifically, join points in Sequent Core are
preserved during simplifications such as the ubiquitous case-
of-case transformation (Sections 4.2 and 4.3). Further, we show
how to recover the join points of Sequent Core programs, after
they are lost in translation, using a lightweight version of a
process known as contification [20] (Section 5).

So what kind of intermediate language do we get out of the sequent
calculus? It turns out that the language resembles continuation-
passing style, a common technique in the �-calculus for representing
control flow inside a program. The division between assumptions
and conclusions in the logic gives us a divide between programs
that yield results and continuations that observe those results in
the language. Yet despite the surface similarity, Sequent Core is
still quite different from continuation-passing style (Section 6).
Perhaps most importantly, Sequent Core brings control flow and
continuations to a compiler like GHC without stepping on its toes,
allowing its extensive direct-style optimizations to still shine through.
In the end, we get an intermediate language that lies somewhere in
between direct and continuation-passing styles (Section 7), sharing
some advantages of both.

In a sense, many of the basic ideas we present here have been
re-discovered over the years as the tradition of Curry-Howard

1 More details of the meta-theory can be found in the appendix: http:
//ix.cs.uoregon.edu/~pdownen/publications/scfp_ext.pdf
2 Available at: http://github.com/lukemaurer/sequent-core

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’16, September 18–24, 2016, Nara, Japan
ACM. 978-1-4503-4219-3/16/09...
http://dx.doi.org/10.1145/2951913.2951931

74

19

RQ4: What algorithms are naturally expressed in SQ

• The operational essence of classical logic are control operators: a functional
goto.

• There are two ways to write programs using control effects: control operators
or in continuation-passing-style (CPS).

• Both ways are difficult to read and to reason about.

• Can we express these algorithms more modularily, comprehensibly, extensibly
using sequent calculus?

20

Programming in the Sequent
Calculus

21

Positive Products

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

Introduction and Elimination, Le! and Right 106:7

Syntax

! ! " Types

! $ | %& .' Producers
(! & | %̃$.' Consumers
' ! 〈# | | (〉 Commands
) ! $ Values

E[] ! * Focusing Context
F [] ! * Cofocusing Context

Γ ! $: ! , Γ | * Producer Context
Δ ! & : ! ,Δ | * Consumer Context

Reduction

〈) | | %̃$.'〉 ⊲!̃ '{$:=)}
〈%& .' | | (〉 ⊲! '{& := (}

In + rules, $ is fresh, # ∉) .

〈E[#] | | (〉 ⊲" 〈# | | %̃$.〈E[$] | | (〉〉
〈) | | F [#]〉 ⊲" 〈# | | %̃$.〈) | | F [$]〉〉

Typing rules
$: ! ∈ Γ

Γ $ $: ! | Δ
(R-Var)

& : ! ∈ Δ

Γ | & : ! $ Δ
(L-Var)

' : (Γ $ & : ! ,Δ)

Γ $ %& .' : ! | Δ
(R-%)

' : ($: ! , Γ $ Δ)

Γ | %̃$.' : ! $ Δ
(L-%)

Γ $ # : ! | Δ
Γ | (: ! $ Δ

〈# | | (〉 : Γ $ Δ
(Cut)

Fig. 2. Core language

represent outer nodes of the type structure. In general, introduction rules yield terms nesting
outside-in because the introduced type appears in the conclusion of the rule, while elimination
rules induce an inside-out nesting as the eliminated type occurs in the premise of the rule.
When we use elimination forms on the left to introduce a type on the right or vice-versa

we therefore reverse the nesting structure of the program and thereby also alter its modularity
properties.

Consider the programs in Table 2 again. In the right calculus row, we destruct $ inside-out with
right elimination rules and then construct a producer with the type required by & outside-in using
right introduction rules. The situation is reversed in the left calculus row. Here we destruct the
continuation & inside-out with left elimination rules and construct a continuation with the type
required by $ outside-in using left introduction rules. Similarly, we can get any other combination
of nesting orders by choosing one of the other calculi.
To summarize, having a choice of all four kinds of rules makes it easier for the programmer

to choose a program structure that has the desired modularity and extensibility properties and
maximizes the usage of implicit producers/consumers to avoid the naming of intermediate results
and the associated CPS-like program structure.

3 INTRODUCTION VERSUS ELIMINATION, LEFT VERSUS RIGHT

In this and the next section, we present our language framework, divided into logical steps and
parts. As the !rst step, we present a core language of inputs, outputs, and interactions, without any
logical connectives4 (Figure 2).
As usual in presentations of computational sequent calculi, we have three kinds of sequents:

Γ $ # : ! | Δ describes a producer term # that produces an output of type ! in variable context Γ
and covariable context Δ. Symmetrically, Γ | (: ! $ Δ describes a consumer term (that consumes

4The core is similar to the presentation in Sec. 4 of Downen and Ariola [2018]

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

22

Positive Sums

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

23

Negative Products

24

Negative Pairs

25

Filter

The implementation is not optimal. The list is copied in memory
even if all elements satisfy the predicate.

26

Parsimonious Filter

(Cp. Shivers & Fisher: Multi Return Function Calls)
27

A more general problem: The
space of programming styles.

28

What if we mix rules?

Introduction and Elimination, Le! and Right 106:9

Syntax

! ! . . . | ! →! | ! ⊕ ! | ! ⊗ !
" ! . . . | #($ · %).& | " " | In! " | [", "]

' ! . . . | " · ' | Mat! {In! $! ↦→ &! } | Out! ' | Mat! {[$, $] ↦→ &} | Handle! ' with "

& ! . . . | Case ' {$ · % ↦→ &} | Case " {In! $! ↦→ &! } | Case " {[$, $] ↦→ &}
(! . . . | #($ · %).& | In! (| [(, (]
E[] ! . . . | [!, "] | [(,!] | In! !
F [] ! . . . | ! · '

Typing
Γ % " : !1 | Δ
Γ | ' : !2 % Δ

Γ | " · ' : !1 →!2 % Δ
(L-→-Intro)

& : ($: !1, Γ % % : !2,Δ)

Γ % #($ · %).& : !1 →!2 | Δ
(R-→-Intro)

Γ | ' : !1 →!2 % Δ

& : (Γ, $: !1 % % : !2,Δ)

Case ' {$ · % ↦→ &} : (Γ % Δ)
(L-→-Elim)

Γ % "1 : !1 →!2 | Δ
Γ % "2 : !1 | Δ

Γ % "1 "2 : !2 | Δ
(R-→-Elim)

∀), &! : (Γ, $! : !! % Δ)

Γ | Mat! {In! $! ↦→ &! } : !1 ⊕ !2 % Δ

(L-⊕-Intro)

Γ % " : !! | Δ

Γ % In! " : !1 ⊕ !2 | Δ
(R-⊕-Intro!)

Γ | ' : !1 ⊕ !2 % Δ

Γ | Out! ' : !! % Δ
(L-⊕-Elim!)

Γ % " : !1 ⊕ !2 | Δ
∀), &! : (Γ, $! : !! % Δ)

Case " {In! $! ↦→ &! } : (Γ % Δ)
(R-⊕-Elim)

& : ($: !1,* : !2, Γ % Δ)

Γ | Mat! {[$,*] ↦→ &} : !1 ⊗ !2 % Δ

(L-⊗-Intro)

Γ % "1 : !1 | Δ
Γ % "2 : !2 | Δ

Γ % ["1, "2] : !1 ⊗ !2 | Δ
(R-⊗-Intro)

Γ | ' : !1 ⊗ !2 % Δ

Γ % " : !! | Δ

Γ | Handle! ' with " : !2−!+1 % Δ
(L-⊗-Elim!)

Γ % " : !1 ⊗ !2 | Δ
& : ($: !1,* : !2, Γ % Δ)

Case " {[$,*] ↦→ &} : (Γ % Δ)
(R-⊗-Elim)

Reduction

〈#($ · %).& | | (· ' 〉 ⊲" &{$:= (,% := ' }

〈 In# (| | Mat! {In! $! ↦→ &! } 〉 ⊲" & # {$ # := (}
〈[(1, (2] | | Mat! {[$,*] ↦→ &}〉 ⊲" &{$:= (1,* := (2}

Fig. 3. Syntax, typing and reduction for functions, positive sums, and positive products

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

29

106:26 Klaus Ostermann, David Binder, Ingo Skupin, Tim Süberkrüb, and Paul Downen

A EXAMPLE PROGRAMS IN FORMAL CALCULUS SYNTAX

The examples in Section 2 were written in a simpli!ed version of the formal syntax. The fully
formal version of Table 1 can be found in Table 3, the fully formal version of Table 2 in Table 4.

Table 3. Four di!erent ways to swap the components of ! : " ⊕ # and send to consumer $: # ⊕ " .

Calculus Program
Right Case ! {In1 % ↦→ 〈In2 % | | $〉; In2 & ↦→ 〈In1 & | | $〉}
Intro 〈! | | Mat! {In1 % ↦→ 〈In2 % | | $〉; In2 & ↦→ 〈In1 & | | $〉}〉
Left 〈! | | Mat! {In1 % ↦→ 〈% | | Out2 $〉; In2 & ↦→ 〈& | | Out1 $〉}〉
Elim Case ! {In1 % ↦→ 〈% | | Out2 $〉; In2 & ↦→ 〈& | | Out1 $〉}

Table 4. Computation from % : (& & ") & & to $: ⊥ ⊕ ((" ⊕ ⊥) ⊕ ⊥).

Calculus Program Program Structure
Right 〈In2 (In1 (In1 (Out2 (Out1 %))) | | $〉 $ outside-in, % inside-out
Intro 〈% | | In1 (In2 '̃% .〈In2 (In1 (In1 %)) | | $〉)〉 % outside-in, $ outside-in
Left 〈% | | In1 (In2 (Out1 (Out1 (Out2 $))))〉 % outside-in, $ inside-out
Elim 〈Out2 (Out1 %) | | Out1 (Out1 (Out2 $))〉 $ inside-out, % inside-out

REFERENCES

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming In!nite Structures
by Observations. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Rome, Italy) (POPL ’13). Association for Computing Machinery, New York, NY, USA, 27–38. https://doi.org/
10.1145/2480359.2429075

Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2
(1992), 297–347. Issue 3. https://doi.org/10.1093/logcom/2.3.297

David Binder, Julian Jabs, Ingo Skupin, and Klaus Ostermann. 2019. Decomposition Diversity with Symmetric Data and
Codata. Proc. ACM Program. Lang. 4, POPL, Article 30 (Dec. 2019), 28 pages. https://doi.org/10.1145/3371098

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Proceedings of the 21st
International Conference on Concurrency Theory (Paris, France) (CONCUR’10). Springer-Verlag, Berlin, Heidelberg, 222–
236. https://doi.org/10.1007/978-3-642-15375-4_16

Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. 2012. The stack calculus. In Proceedings Seventh Workshop on
Logical and Semantic Frameworks, with Applications, LSFA 2012, Rio de Janeiro, Brazil, September 29-30, 2012 (EPTCS,
Vol. 113). 93–108. https://doi.org/10.48550/arXiv.1303.7331

Tristan Crolard. 2004. A Formulae-as-Types Interpretation of Subtractive Logic. Journal of Logic and Computation 14 (2004),
529–570. Issue 4. https://doi.org/10.1093/logcom/14.4.529

Pierre-Louis Curien and Hugo Herbelin. 2000. The Duality of Computation. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New York, NY,
USA, 233–243. https://doi.org/10.1145/357766.351262

Paul Downen and Zena M. Ariola. 2014. The Duality of Construction. In Proceedings of the 23rd European Symposium on
Programming Languages and Systems - Volume 8410 (ESOP ’14). Springer-Verlag, Berlin, Heidelberg, 249–269. https:
//doi.org/10.1007/978-3-642-54833-8_14

Paul Downen and Zena M. Ariola. 2018. A tutorial on computational classical logic and the sequent calculus. Journal of
Functional Programming 28 (2018). https://doi.org/10.1017/S0956796818000023

Paul Downen and Zena M. Ariola. 2021. Duality in Action. In 6th International Conference on Formal Structures for
Computation and Deduction, FSCD (LIPIcs, Vol. 195), Naoki Kobayashi (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 1–32. https://doi.org/10.4230/LIPIcs.FSCD.2021.1

Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. 2019. Codata in Action. In European Symposium
on Programming (ESOP ’19). Springer, 119–146. https://doi.org/10.1007/978-3-030-17184-1_5

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

30

• Introduction and Elimination,
Left and Right  
 dl.acm.org/doi/
10.1145/3547637

• github.com/duo-lang

More Info
106

Introduction and Elimination, Le! and Right

KLAUS OSTERMANN, University of Tübingen, Germany

DAVID BINDER, University of Tübingen, Germany

INGO SKUPIN, University of Tübingen, Germany

TIM SÜBERKRÜB, University of Tübingen, Germany

PAUL DOWNEN, University of Massachusetts Lowell, USA

Functional programming language design has been shaped by the framework of natural deduction, in which
language constructs are divided into introduction and elimination rules for producers of values. In sequent
calculus-based languages, left introduction rules replace (right) elimination rules and provide a dedicated
sublanguage for consumers of values. In this paper, we present and analyze awider design space of programming
languages which encompasses four kinds of rules: Introduction and elimination, both left and right. We
analyze the in!uence of rule choice on program structure and argue that having all kinds of rules enriches a
programmer’s modularity arsenal. In particular, we identify four ways of adhering to the principle that ”the
structure of the program follows the structure of the data“ and show that they correspond to the four possible
choices of rules. We also propose the principle of bi-expressibility to guide and validate the design of rules
for a connective. Finally, we deepen the well-known dualities between di"erent connectives by means of the
proof/refutation duality.

CCS Concepts: • Theory of computation → Abstract machines; Lambda calculus; Type theory; Proof theory;
Linear logic.

Additional Key Words and Phrases: Duality, Sequent Calculus, Natural Deduction

ACM Reference Format:
Klaus Ostermann, David Binder, Ingo Skupin, Tim Süberkrüb, and Paul Downen. 2022. Introduction and
Elimination, Left and Right. Proc. ACM Program. Lang. 6, ICFP, Article 106 (August 2022), 28 pages. https:
//doi.org/10.1145/3547637

1 INTRODUCTION

Undoubtedly, the !-calculus has had a profound impact on functional programming: from language
design, to implementation, to practical programming techniques. Through the Curry-Howard
correspondence, we know that the !-calculus — and likewise, !-based functional languages —
are oriented around the interplay between the introduction and elimination rules of types as #rst
formulated in natural deduction (ND). This natural deduction style of programming nicely allows
for a quite “natural” way of combining sub-problems in programs, like basic operations of function
composition " (# $) and swapping the pair $ as (Snd $, Fst $). The natural compositional style is
a"orded by the fact that all expressions in the !-calculus produce exactly one result that is implicitly
taken by exactly one consumer: namely, the enclosing context of that expression. While the single
implicit consumer is natural for composition, it can be rather unnatural if we ever want to work

Authors’ addresses: Klaus Ostermann, University of Tübingen, Germany, klaus.ostermann@uni-tuebingen.de; David
Binder, University of Tübingen, Germany, david.binder@uni-tuebingen.de; Ingo Skupin, University of Tübingen, Germany,
skupin@informatik.uni-tuebingen.de; Tim Süberkrüb, University of Tübingen, Germany, tim.sueberkrueb@student.uni-
tuebingen.de; Paul Downen, University of Massachusetts Lowell, USA, Paul_Downen@uml.edu.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART106
https://doi.org/10.1145/3547637

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 106. Publication date: August 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

31

http://dl.acm.org/doi/10.1145/3547637
http://dl.acm.org/doi/10.1145/3547637
http://github.com/duo-lang

Thank you for your attention

32

