

Reasoning about Amortized Cost: From Syntax to Semantics

FPDag 2026 @ Nijmegen

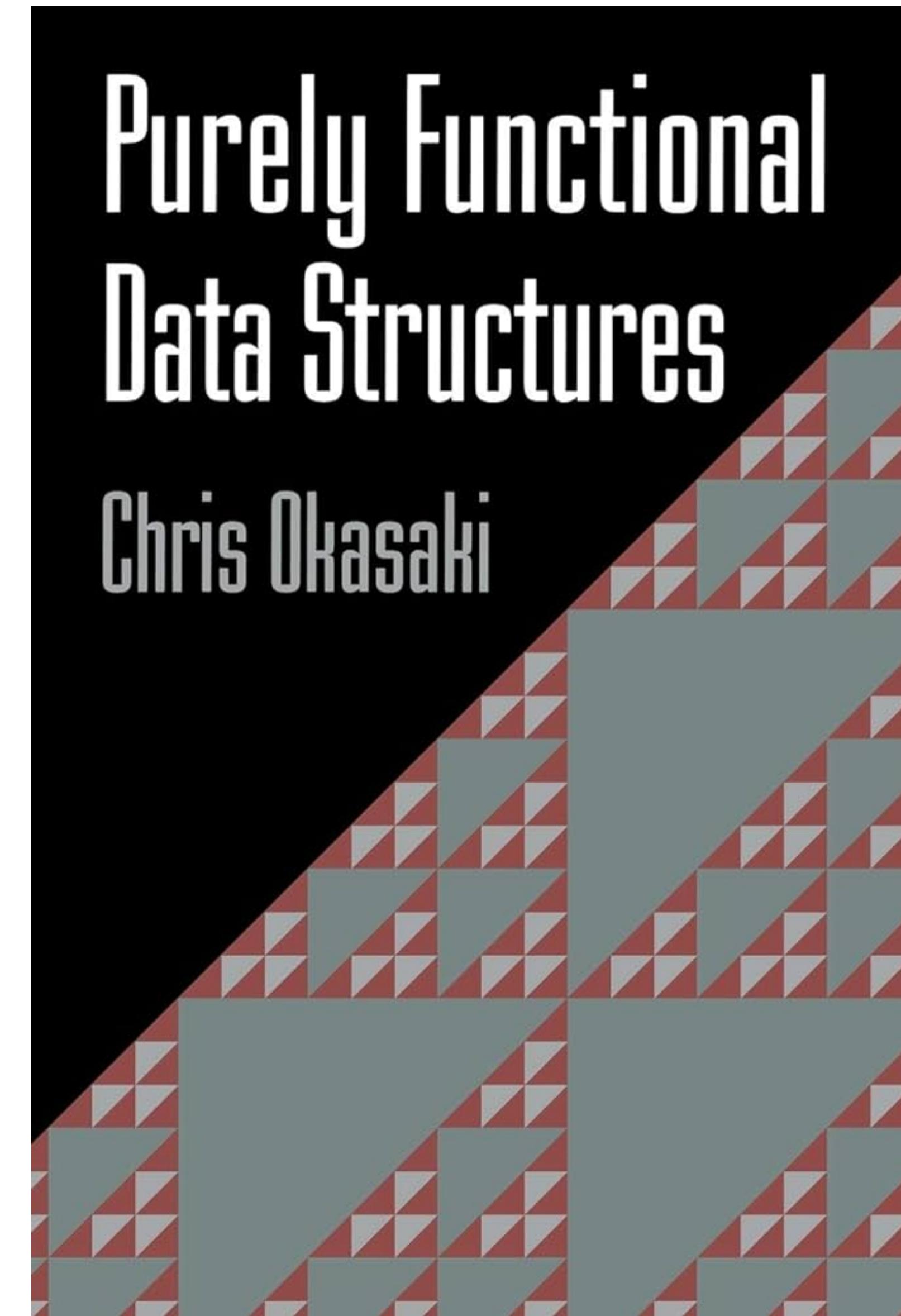
David Binder, University of Kent (joint work with Dominic Orchard, Vineet Rajani and David Corfield)

Part I

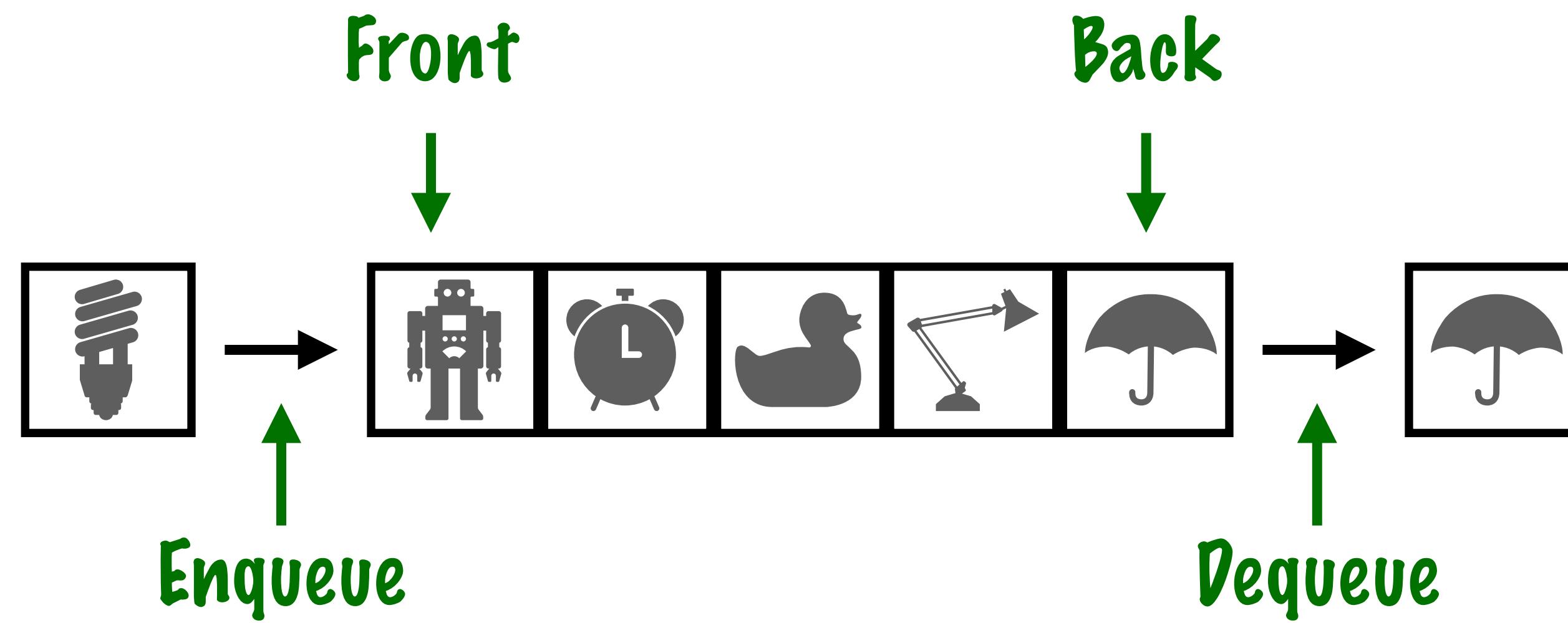
Fundamentals of Amortized Cost Analysis

Okasaki: Purely Functional Data Structures

Introduces key techniques for analyzing the complexity of algorithms on functional data structures

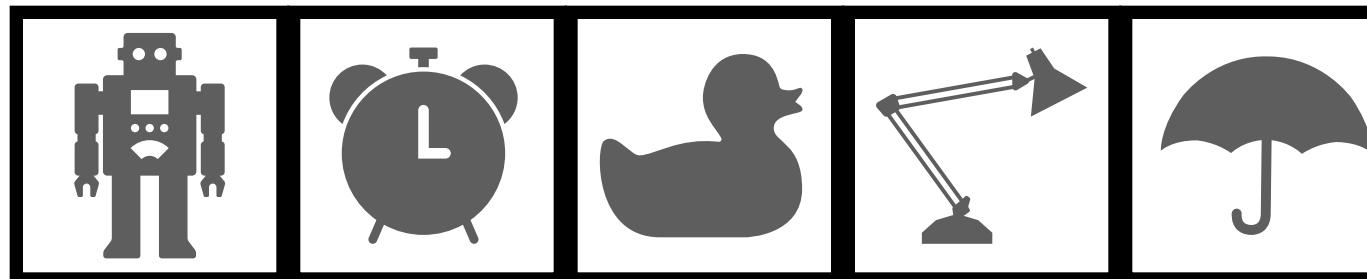


FIFO Queues

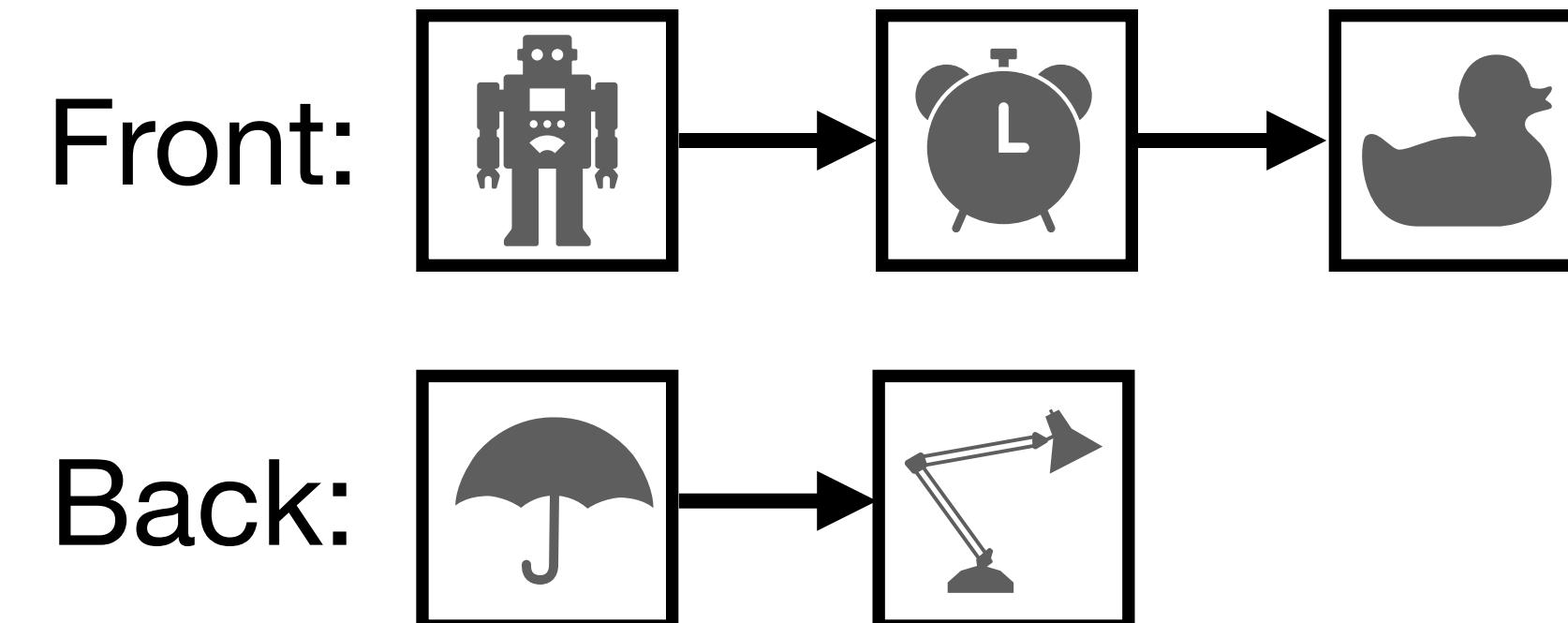


The Two-List Implementation

External View:

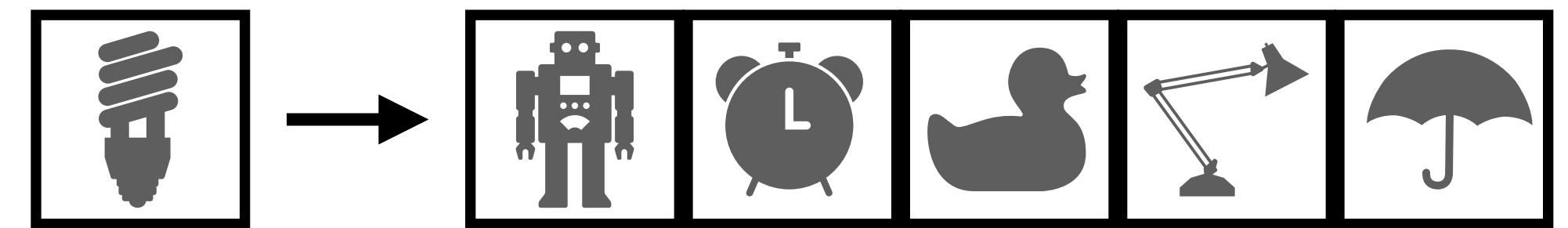


Internal Representation:

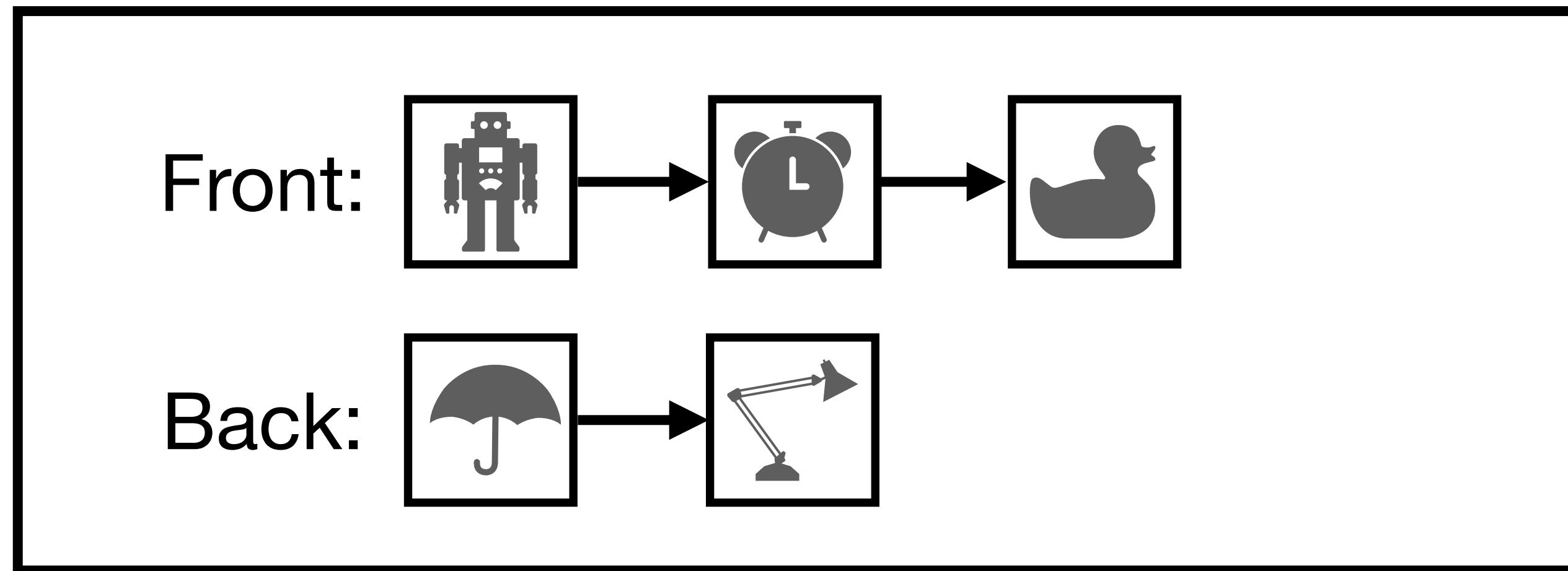


We represent a queue by two singly-linked lists. The back of the queue is stored in reverse order.

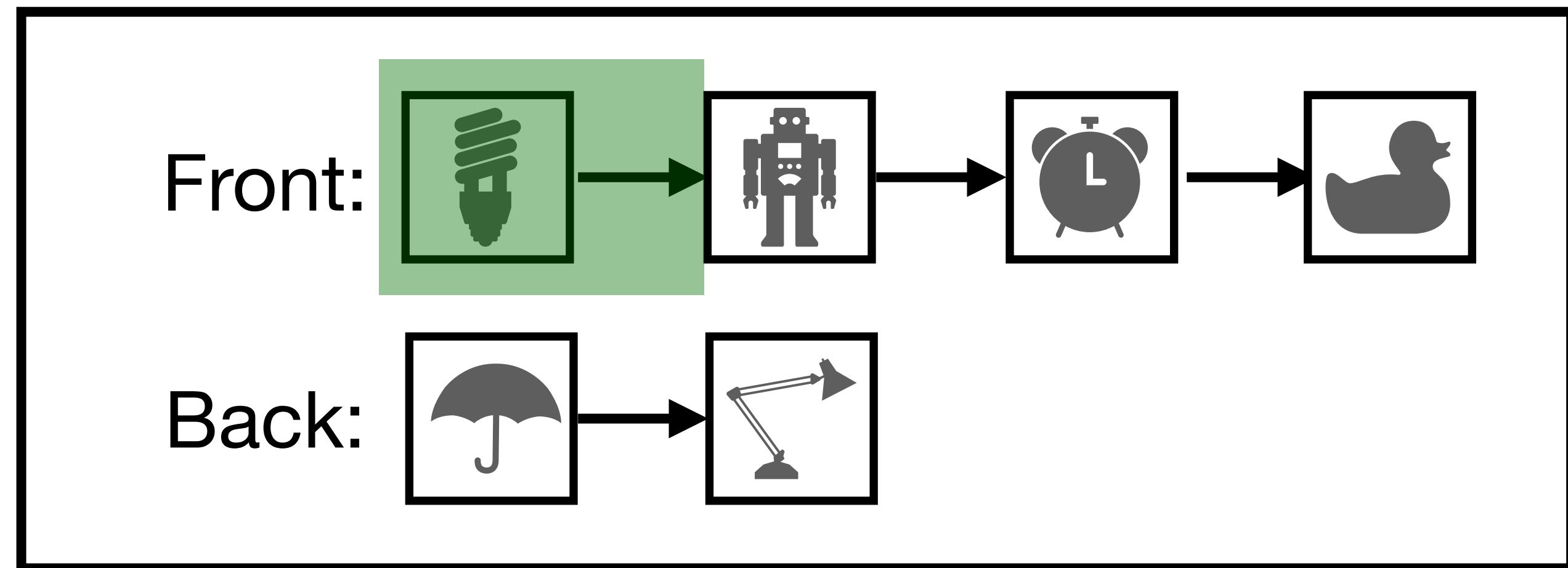
Enqueue



Before:

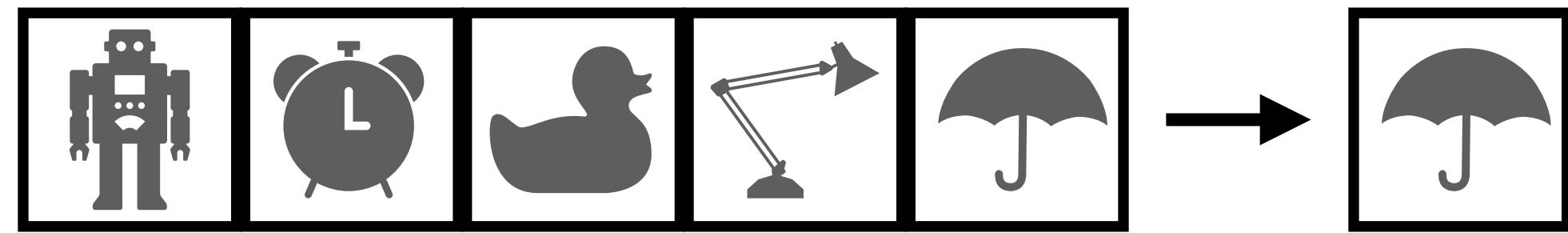


After:

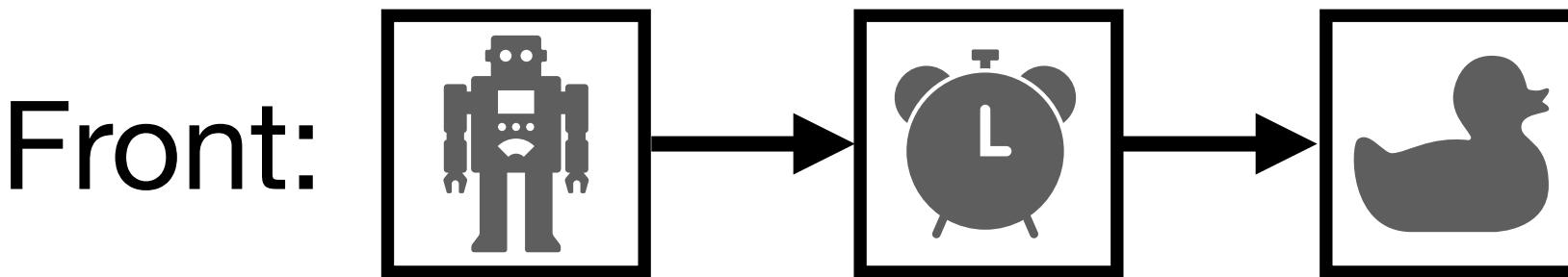


Worst Case: $O(1)$

Dequeue

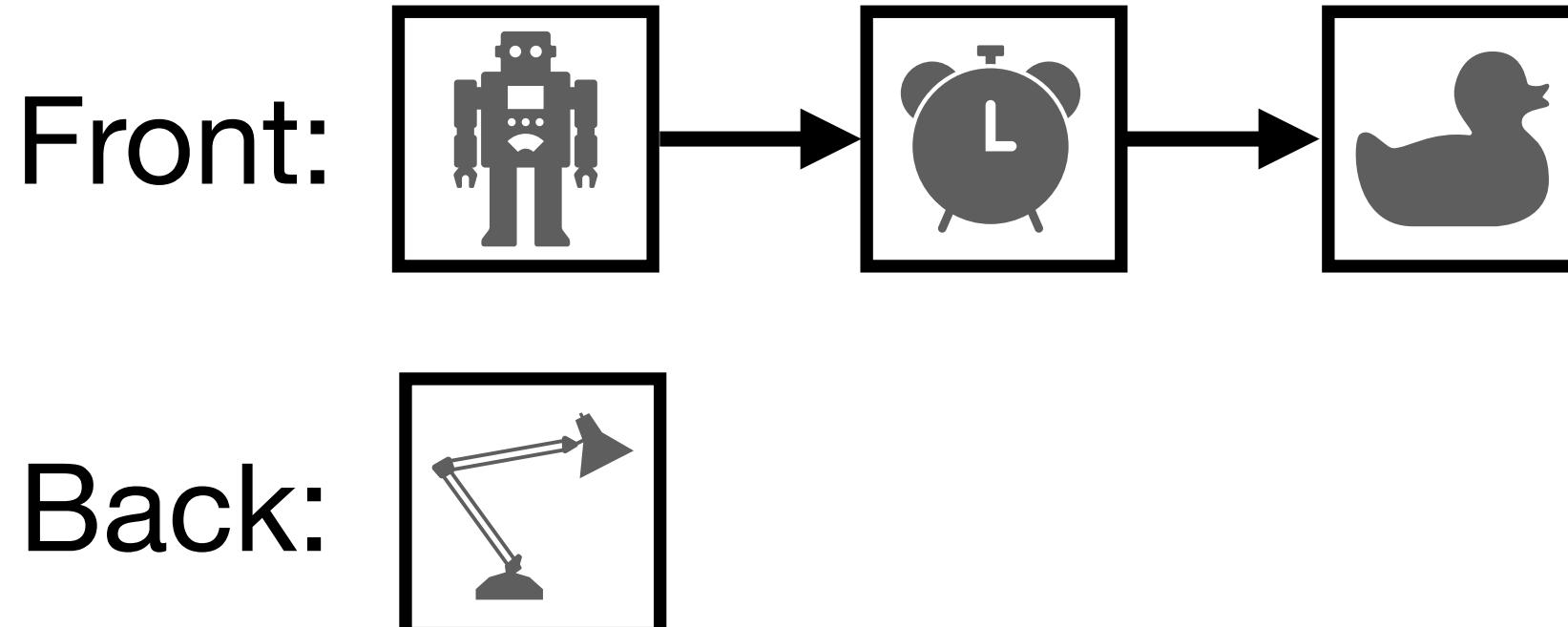


Before:

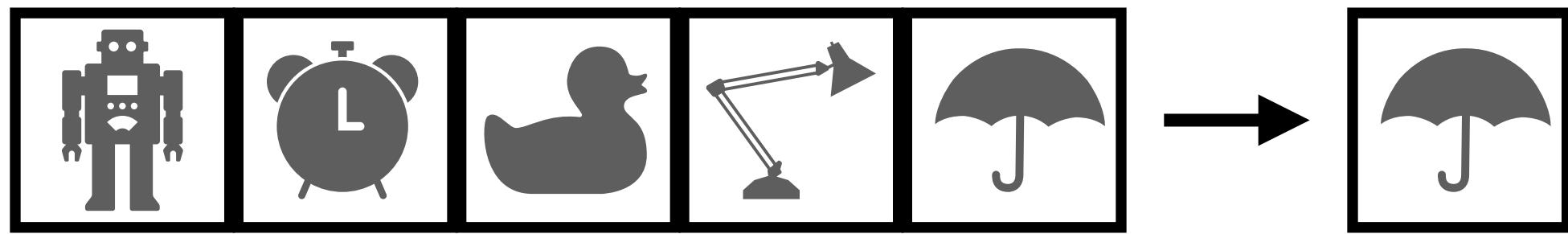


Worst Case: O(1)

After:

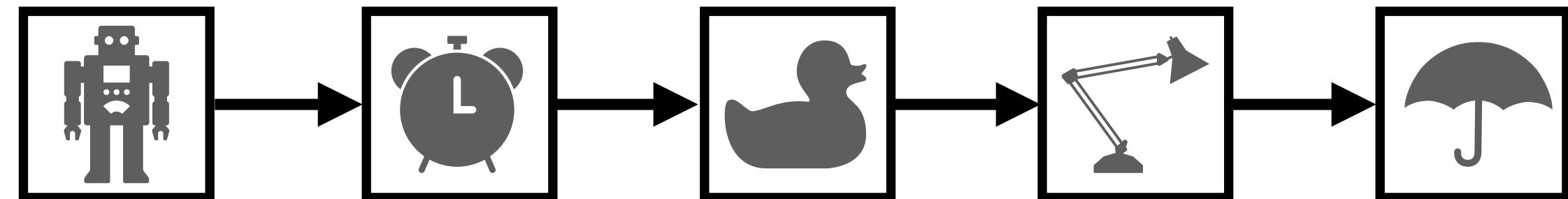


Dequeue



Before:

Front:

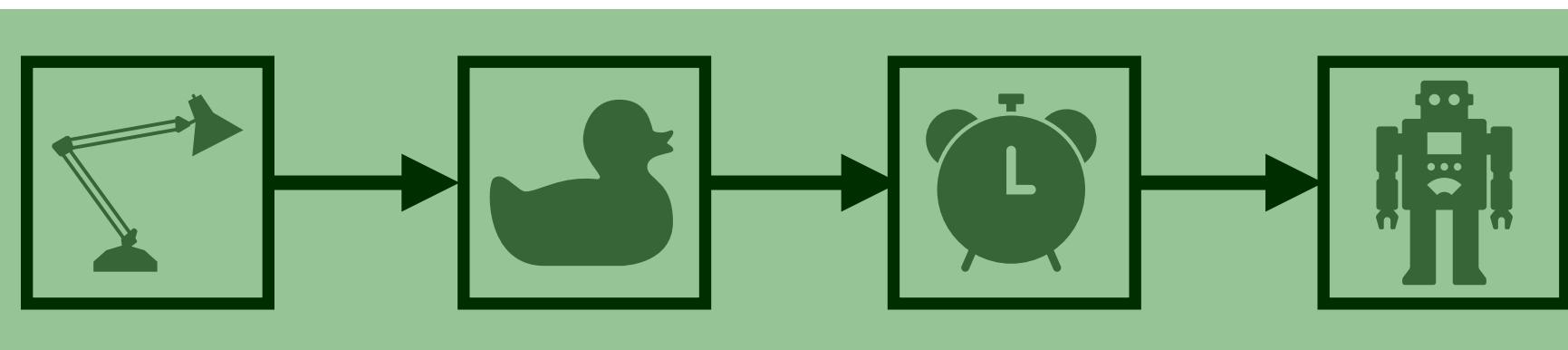


Back:

After:

Front:

Back:

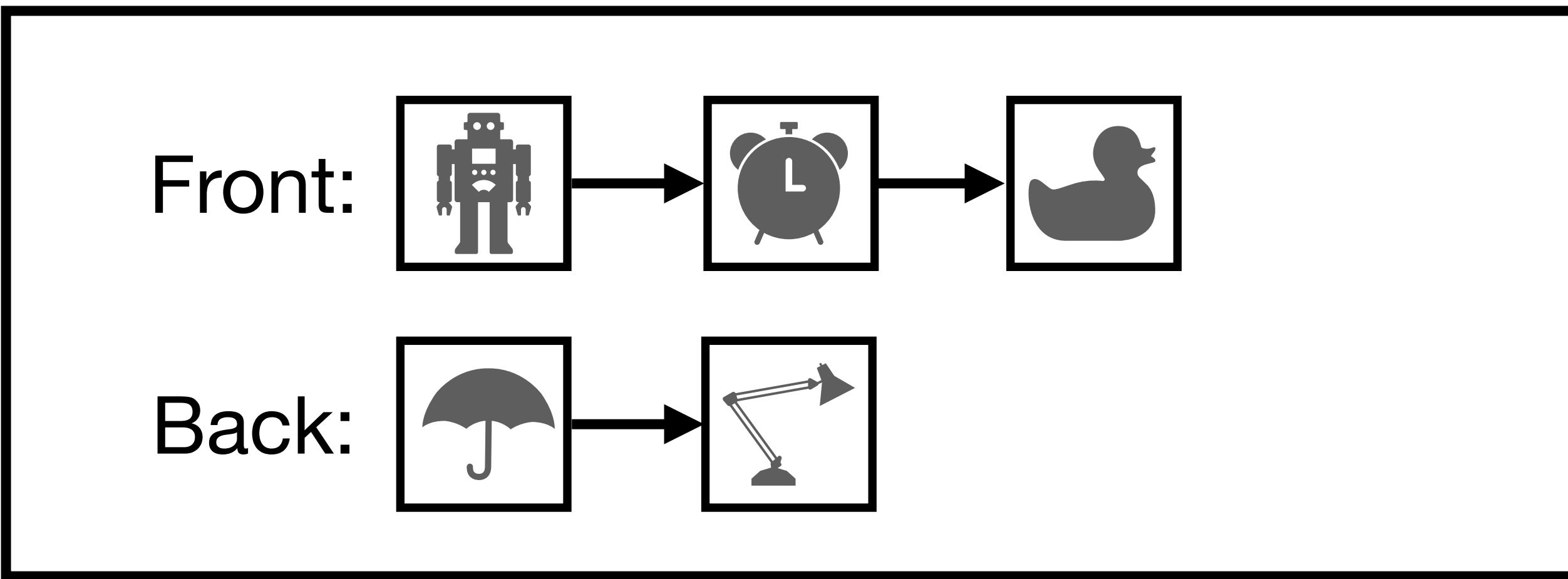


Worst Case: $O(n)$

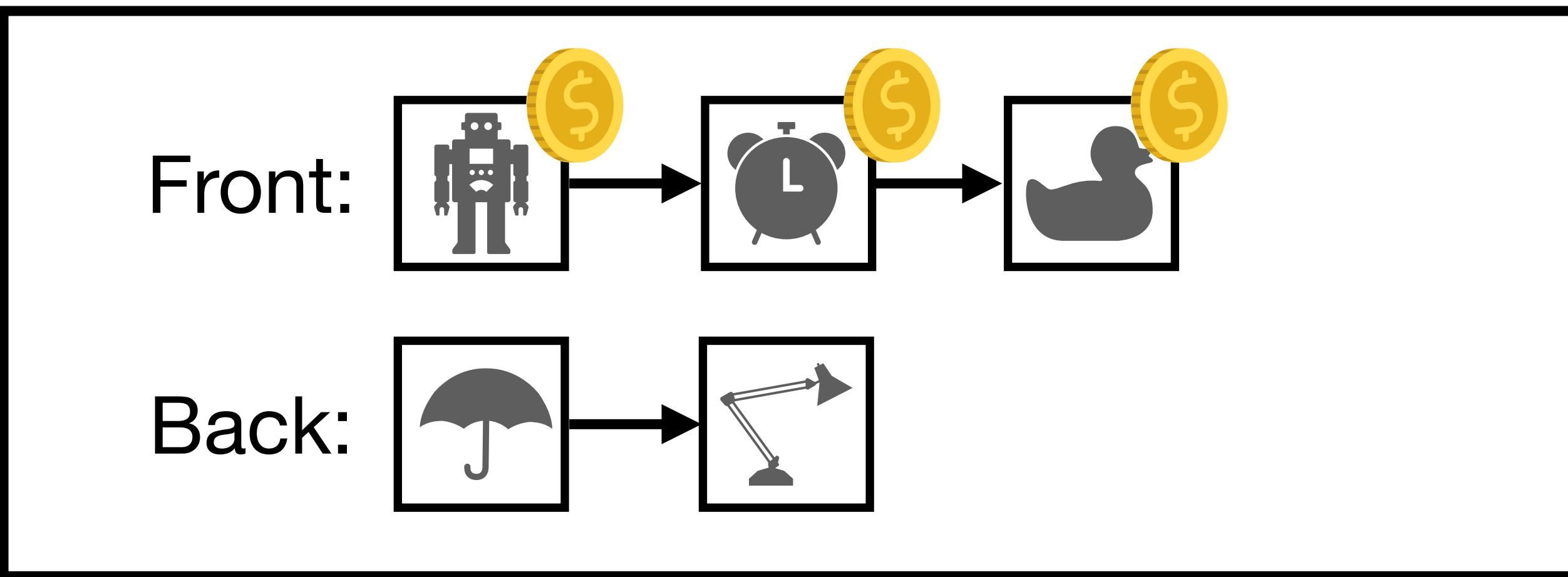
The Gist of the Banker's Method: Store Potential in the Data Structure

Amortization with Potential

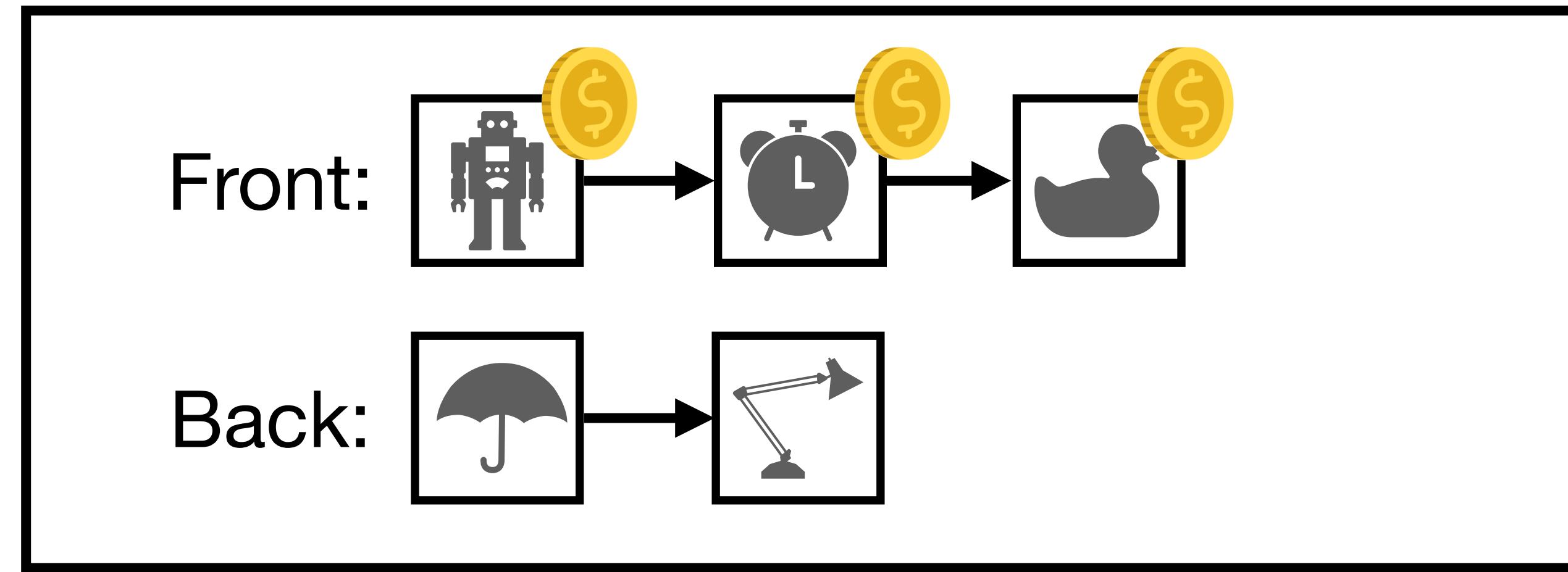
Without Potential:



With Potential:



Cost of Enqueue and Dequeue



- Enqueue: Cost 1 for cons-ing an element to the front list plus cost 1 for storing potential.
- Dequeue (simple): Cost 1 for removing the head of the back list.
- Dequeue (reverse): Use the stored potential to pay for the cost of reversing the list which results in a cost of 0.
- Together ensures amortized cost of $O(1)$: Any sequence of n enqueue and dequeue operations costs at most $O(n)$.

Takeaway: We need a way to store potential within a data structure

Part II

A Type System for Amortized Cost

From Whiteboard Reasoning to Type Theory

- To track cost we use graded monads
- To represent stored potential we use a phantom type $[p]\tau$
- The type system is affine because we are not allowed to duplicate potential
- Based on V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann:
A unifying type-theory for higher-order (amortized) cost analysis

Graded Monads

$$\frac{\Gamma \vdash t : \tau}{\Gamma \vdash \text{ret } t : \mathbb{M} \blacksquare \tau} \text{ RETURN}$$

$$\frac{\Gamma \vdash t_1 : \mathbb{M} \blacksquare \tau_1 \quad \Gamma, x : \tau_1 \vdash t_2 : \mathbb{M} \blacksquare \tau_2}{\Gamma \vdash \text{bind } x = t_1 \text{ in } t_2 : \mathbb{M} \blacksquare \tau_2} \text{ BIND}$$

Grades are elements of a monoid with unit 0 and operation +

Annotating Cost

$$\frac{}{\Gamma \vdash \uparrow^\kappa : \mathbb{M} \kappa 1} \text{ TICK}$$

 Unit type

The user annotates those parts of the program that should incur costs.

Honest Graded Monads

$$\frac{\Gamma \vdash e : \mathbb{M} \ 0 \ \tau}{\Gamma \vdash \text{run}(e) : \tau} \text{ RUN}$$

Any possible effect is reflected in the grade.

Overapproximation Through Subtyping

$$\frac{\begin{array}{c} \text{Order relation on costs} \\ p_1 \leq p_2 \end{array} \quad \begin{array}{c} \text{Subtyping} \\ \tau_1 <: \tau_2 \end{array}}{\mathbb{M} p_1 \tau_1 <: \mathbb{M} p_2 \tau_2} \text{S-MON}$$

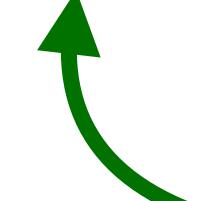
Costs should form an ordered monoid.

This order allows for over approximation in the analysis.

How to model amortization?

Storing Potential

$$\frac{\Gamma \vdash t : \tau}{\Gamma \vdash \text{store } t : \mathbb{M} \kappa ([\kappa]\tau)} \text{ STORE}$$


Potential type

Pay κ cost now to store κ potential for later use.

Releasing Potential

$$\frac{\Gamma \vdash t_1 : [\kappa_1]\tau_1 \quad \Gamma, x : \tau_1 \vdash t_2 : \mathbb{M} \ (\kappa_1 + \kappa_2) \ \tau_2}{\Gamma \vdash \text{release } x = t_1 \text{ in } t_2 : \mathbb{M} \ \kappa_2 \ \tau_2} \text{ RELEASE}$$

This value has κ_1 potential attached to it

This computation has cost $\kappa_1 + \kappa_2$

We have reduced the cost of the computation by κ_1

Summary

$$\frac{\Gamma \vdash t : \tau}{\Gamma \vdash \text{ret } t : \mathbb{M} 0 \tau} \text{ RETURN}$$

$$\frac{\Gamma \vdash t_1 : \mathbb{M} p_1 \tau_1 \quad \Gamma, x : \tau_1 \vdash t_2 : \mathbb{M} p_2 \tau_2}{\Gamma \vdash \text{bind } x = t_1 \text{ in } t_2 : \mathbb{M} (p_1 + p_2) \tau_2} \text{ BIND}$$

$$\frac{}{\Gamma \vdash \uparrow^\kappa : \mathbb{M} \kappa 1} \text{ TICK}$$

$$\frac{\Gamma \vdash e : \mathbb{M} 0 \tau}{\Gamma \vdash \text{run}(e) : \tau} \text{ RUN}$$

$$\frac{\Gamma \vdash t : \tau}{\Gamma \vdash \text{store } t : \mathbb{M} \kappa ([\kappa]\tau)} \text{ STORE}$$

$$\frac{\Gamma \vdash t_1 : [\kappa_1]\tau_1 \quad \Gamma, x : \tau_1 \vdash t_2 : \mathbb{M} (\kappa_1 + \kappa_2) \tau_2}{\Gamma \vdash \text{release } x = t_1 \text{ in } t_2 : \mathbb{M} \kappa_2 \tau_2} \text{ RELEASE}$$

Part III

A Categorical Semantics of Cost

Existing Kripke Semantics

$\llbracket 1 \rrbracket$	$\triangleq \{(p, T, ())\}$
$\llbracket b \rrbracket$	$\triangleq \{(p, T, v) \mid v \in \llbracket b \rrbracket\}$
$\llbracket L^0 \tau \rrbracket$	$\triangleq \{(p, T, \text{nil})\}$
$\llbracket L^{s+1} \tau \rrbracket$	$\triangleq \{(p, T, v :: l) \mid \exists p_1, p_2. p_1 + p_2 \leq p \wedge (p_1, T, v) \in \llbracket \tau \rrbracket \wedge (p_2, T, l) \in \llbracket L^s \tau \rrbracket\}$
$\llbracket \tau_1 \otimes \tau_2 \rrbracket$	$\triangleq \{(p, T, \langle\langle v_1, v_2 \rangle\rangle) \mid \exists p_1, p_2. p_1 + p_2 \leq p \wedge (p_1, T, v_1) \in \llbracket \tau_1 \rrbracket \wedge (p_2, T, v_2) \in \llbracket \tau_2 \rrbracket\}$
$\llbracket \tau_1 \& \tau_2 \rrbracket$	$\triangleq \{(p, T, \langle v_1, v_2 \rangle) \mid (p, T, v_1) \in \llbracket \tau_1 \rrbracket \wedge (p, T, v_2) \in \llbracket \tau_2 \rrbracket\}$
$\llbracket \tau_1 \oplus \tau_2 \rrbracket$	$\triangleq \{(p, T, \text{inl}(v)) \mid (p, T, v) \in \llbracket \tau_1 \rrbracket\} \cup \{(p, T, \text{inr}(v)) \mid (p, T, v) \in \llbracket \tau_2 \rrbracket\}$
$\llbracket !\tau \rrbracket$	$\triangleq \{(p, T, !e) \mid (0, T, e) \in \llbracket \tau \rrbracket_{\mathcal{E}}\}$
$\llbracket \tau_1 \multimap \tau_2 \rrbracket$	$\triangleq \{(p, T, \lambda x. e) \mid \forall p', e', T' < T. (p', T', e') \in \llbracket \tau_1 \rrbracket_{\mathcal{E}} \implies (p + p', T', e[e'/x]) \in \llbracket \tau_2 \rrbracket_{\mathcal{E}}\}$
$\llbracket [n] \tau \rrbracket$	$\triangleq \{(p, T, v) \mid \exists p'. p' + n \leq p \wedge (p', T, v) \in \llbracket \tau \rrbracket\}$
$\llbracket \mathbb{M} \kappa \tau \rrbracket$	$\triangleq \{(p, T, v) \mid \forall \kappa', v', T' < T. v \Downarrow_{T'}^{\kappa'} v' \implies \exists p'. \kappa' + p' \leq p + \kappa \wedge (p', T - T', v') \in \llbracket \tau \rrbracket\}$
$\llbracket \forall \alpha. \tau \rrbracket$	$\triangleq \{(p, T, \Lambda. e) \mid \forall \tau', T' < T. (p, T', e) \in \llbracket \tau[\tau'/\alpha] \rrbracket_{\mathcal{E}}\}$
$\llbracket \forall i. \tau \rrbracket$	$\triangleq \{(p, T, \Lambda. e) \mid \forall I, T' < T. (p, T', e) \in \llbracket \tau[I/i] \rrbracket_{\mathcal{E}}\}$
$\llbracket C \Rightarrow \tau \rrbracket$	$\triangleq \{(p, T, \Lambda. e) \mid . \models C \implies (p, T, e) \in \llbracket \tau \rrbracket_{\mathcal{E}}\}$
$\llbracket C \& \tau \rrbracket$	$\triangleq \{(p, T, v) \mid . \models C \wedge (p, T, v) \in \llbracket \tau \rrbracket\}$
$\llbracket \exists s. \tau \rrbracket$	$\triangleq \{(p, T, v) \mid \exists s'. (p, T, v) \in \llbracket \tau[s'/s] \rrbracket\}$
$\llbracket \lambda_t i. \tau \rrbracket$	$\triangleq f \text{ where } \forall I. f I = \llbracket \tau[I/i] \rrbracket$
$\llbracket \tau I \rrbracket$	$\triangleq \llbracket \tau \rrbracket I$

Operational forcing semantics for monad

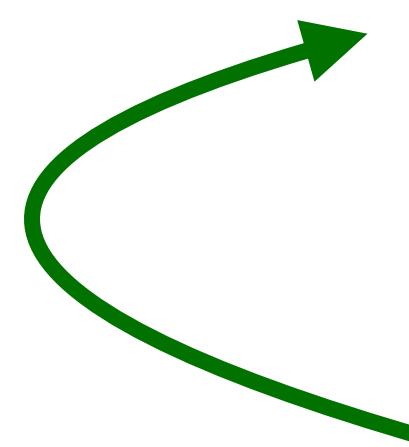
An interesting observation

$$\frac{\Gamma \vdash t : \tau}{\Gamma \vdash \text{store } t : \mathbb{M} \kappa ([\kappa]\tau)} \text{ STORE}$$

$\text{pay} : [p](\mathbb{M} p \tau) \multimap \tau$

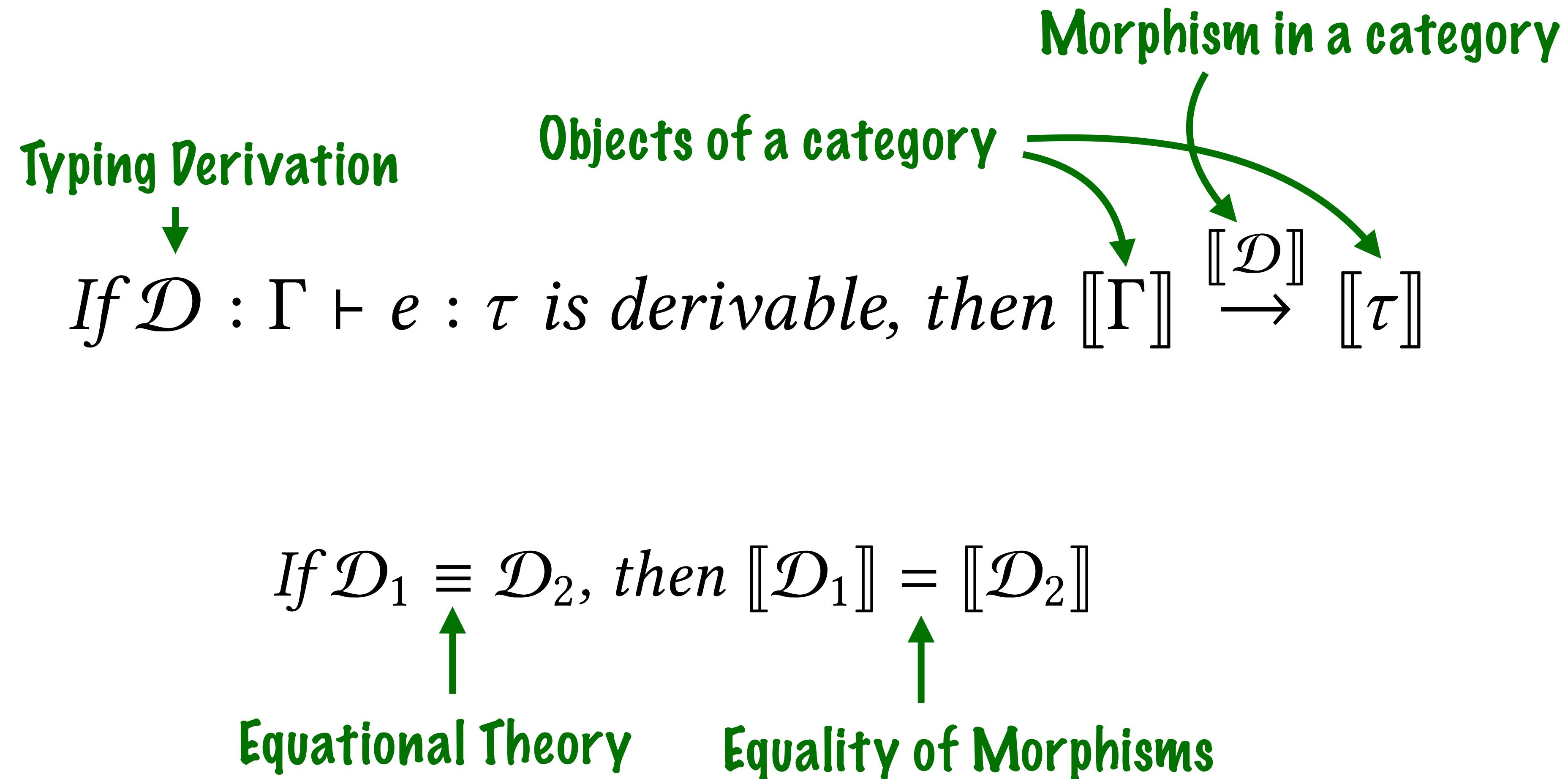
$\text{pay} = \lambda x. \text{run}(\text{release } y = x \text{ in } y)$

$$\epsilon : FG \rightarrow 1 \quad \eta : 1 \rightarrow GF$$



Unit and counit of an adjunction

Categorical Models



The Cost Category \mathbb{C}

- Previously we required that costs form an ordered monoid
- We can turn this into a category \mathbb{C}
- Objects of \mathbb{C} are costs $0, 1, 42, \dots$
- Morphisms of \mathbb{C} witness the order between costs
- The unit 0 and operation $+$ form a monoidal structure on \mathbb{C}

The Model Category \mathbb{X}

- The model category \mathbb{X} needs enough structure to interpret the usual linear logic connectives $\&$, \oplus , \otimes and \multimap , as well as their units.
- We need a strong graded monad $M : \mathbb{C} \times \mathbb{X} \rightarrow \mathbb{X}$
- We need a strong functor $P : \mathbb{C} \times \mathbb{X} \rightarrow \mathbb{X}$ (contravariant in first argument)
- For every grade p there is an adjunction $P(p, -) \dashv M(p, -)$

Graded Monads

- A functor $M : \mathbb{C} \times \mathbb{X} \rightarrow \mathbb{X}$
- A natural transformation $\eta_X : X \rightarrow M(0, X)$
- A natural transformation $\mu_{X, p_1, p_2} : M(p_1, M(p_2, X)) \rightarrow M(p_1 + p_2, X)$

$$\begin{array}{ccc} M(0, M(p_1, X)) & \xrightarrow{\mu} & M(0 + p_1, X) \\ \eta \nearrow & & \searrow M\lambda \\ M(p_1, X) & & M(p_1, X) \\ & M\eta \searrow & \nearrow M\rho \\ & M(p_1, M(0, X)) & \xrightarrow{\mu} M(p_1 + 0, X) \end{array}$$

Graded Monads

- A functor $M : \mathbb{C} \times \mathbb{X} \rightarrow \mathbb{X}$
- A natural transformation $\eta_X : X \rightarrow M(0, X)$
- A natural transformation $\mu_{X, p_1, p_2} : M(p_1, M(p_2, X)) \rightarrow M(p_1 + p_2, X)$

$$\begin{array}{ccccc} & & M(p_1, M(p_2, M(p_3, X))) & & \\ & \swarrow \mu & & \searrow M\mu & \\ M(p_1 + p_2, M(p_3, X)) & & & & M(p_1, M(p_2 + p_3, X)) \\ \downarrow \mu & & & & \downarrow \mu \\ M((p_1 + p_2) + p_3, X) & \xrightarrow{M\alpha} & & & M(p_1 + (p_2 + p_3), X) \end{array}$$

Strong Graded Monads

- Strength: $t_{X,Y} : X \otimes M(p, Y) \rightarrow M(p, X \otimes Y)$

$$\begin{array}{ccc}
 X \otimes Y & \xrightarrow{\eta} & M(0, X \otimes Y) \\
 \downarrow \text{id} \otimes \eta & \nearrow t & \downarrow \\
 X \otimes M(0, Y) & & 1 \otimes M(p, X)
 \end{array}
 \quad
 \begin{array}{ccc}
 M(p, X) & \xrightarrow{M\lambda} & M(p, 1 \otimes X) \\
 \downarrow \lambda & \nearrow t_{1,X} & \\
 1 \otimes M(p, X) & &
 \end{array}$$

$$\begin{array}{ccc}
 (X \otimes Y) \otimes M(p, Z) & \xrightarrow{t_{X \otimes Y, Z}} & M(p, (X \otimes Y) \otimes Z) \\
 \downarrow \alpha & & \downarrow M\alpha \\
 X \otimes (Y \otimes M(p, Z)) & \xrightarrow{\text{id} \otimes t} & X \otimes M(p, Y \otimes Z) \xrightarrow{t} M(p, X \otimes (Y \otimes Z))
 \end{array}$$

$$\begin{array}{ccc}
 X \otimes M(p_1, M(p_2, Y)) & \xrightarrow{t} & M(p_1, X \otimes M(p_2, Y)) \xrightarrow{Mt} M(p_1, M(p_2, X \otimes Y)) \\
 \downarrow \text{id} \otimes \mu & & \downarrow \mu \\
 X \otimes M(p_1 + p_2, Y) & \xrightarrow{t} & M(p_1 + p_2, X \otimes Y)
 \end{array}$$

Instances of this Model

- The degenerate set-theoretic model
- The Kripke model of Vineet et al. (Proven in Lean)
- A covariant presheaf model $\mathbb{X} = [\mathbb{C}, \text{Set}]$ which interprets \otimes as Day convolution

Future Work

- Modelling linear logic exponentials $!\tau$ and subexponentials $!_{\leq n}\tau$
- Modelling recursion with a fixpoint operator
- Proving completeness of the categorical model

Questions?