Reasoning about Amortized
Cost: From Syntax to Semantics

David Binder, University of Kent (joint work with Dominic Orchard, Vineet Rajani and David Corfield)

Part |

Fundamentals of Amortized Cost Analysis

Okasaki: Purely
Functional Data
Structures

Introduces key techniques
for analyzing the complexity
of algorithms on functional
data structures

Purely functional
Jata atructures

biris Ohasaki

A

N

h

A

A
V
V
Vv
y
y
A
'
Vv
y

N

4d d4
ddddd

FIFO Queues

Front Back

¢ ¢
R AipglidL I 1PN e

Enqueue Pequeue

The Two-List Implementation

External View: E

Internal Representation:

We represent a queue by two singly-linked lists. The back of the queue is stored in
reverse order.

Enqueue — | [e]S] ™

Before:

After:
Worst Case: 0(1)

Dequeue oS ™—

Before:

Worst Case: 0(1)

After:

Dequeue oS ™—

Before:

After:
of Front:

Back: E

Worst Case: O(n)

The Gist of the Banker's Method:
Store Potential in the Data Structure

Amortization with Potential

Without Potential:

With Potential:

Cost of Enqueue and Dequeue

 Enqueue: Cost 1 for cons-ing an element to the front list plus cost 1 for storing potential.
 Dequeue (simple): Cost 1 for removing the head of the back list.

* Dequeue (reverse): Use the stored potential to pay for the cost of reversing the list which
results in a cost of 0.

* Together ensures amortized cost of O(1): Any sequence of n enqueue and dequeue
operations costs at most O(n).

Takeaway: We need a way to store
potential within a data structure

Part I

A Type System for Amortized Cost

From Whiteboard Reasoning to Type Theory

* [o track cost we use graded monads

 To represent stored potential we use a phantom type |p]t
* The type system is affine because we are not allowed to duplicate potential

 Based on V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann:
A unifying type-theory for higher-order (amortized) cost analysis

Graded Monads

['Fit:1
T'+rett: MBr

RETURN

Fl—tle.ﬁ T,x:rll—tzzM.Tz .
: : IND
[bindx =2, inf, - M SN -

Grades are elements of a monoid with unit 0 and operation +

Annotating Cost

TIiCcK

F'-T¢: Mk 1
t/Uni’r’rype

The user annotates those parts of the program that should incur costs.

Honest Graded Monads

['Fe:MOT

R
['Frun(e) : 7 o

Any possible effect is reflected in the grade.

Overapproximation Through Subtyping

Order relation on cos’rsj (~Subtyping

P1 < P2 71 <: Ty
S-MON
Mpl T1 <2Mp2 To

Costs should form an ordered wmonoid.

This order allows for over approximation in the analysis.

How to model amortization?

Storing Potential

I'Ft:1
['+storet:Mxk (|x]7r)

Pay k cost now to store k potential for later use.

Releasing Potential

This value has «, potential attached to it

(This computation has cost «, + «,

Fl—tlz[zq]rl F,x:T1|-t2=M(K1+K2) 12
['Freleasex =t 1nt, : M Ky 1

RELEASE

We have reduced the cost of the computation by «,

Summary

I'Fit:71 RETURN -t :Mprn Lx:nm bty :Mps BIND
['Frett:MOT I‘I—bindx=t1intZ:M(p1+p2)Tg
I'Fe:MOT
T1C
T Mk 1 e Fl—run(e):rRUN
I'Ft:T STORE
['+storet: Mk (|x]7)
I‘I—tl : [Kl]Tl F,X:Tl thIM(K1+K2) 79
RELEASE

['Freleasex =1t 1nt, : M Ky T

Part Il

A Categorical Semantics of Cost

Existing Kripke Semantics

[1] = {@.T,0)}

[b] = {(p.T,v) | o€ [b]}

[L°7] = {(p,T,nil)}

[L*] 2 {(p. T = D)|3prpepr+p2 < p A (p1.T,0) € [1] A (p2. T, 1) € [L7]}

o] = {(pT (o)) | 3p1,p2.p1+p2 <p A(p1,T,01) € [r1] A (p2.T,0v2) € 2]}

1 &2 = {(p,T,€v1,02)) | (p,T,01) € [r1] A (p, T,02) € [72]}

[men] = {(@Tinl(v)|(p,T,0) €[]} V{p T, inr(v)) | (p,T,0) € [r2]}

'] = {(p.T,'e)| (0, T,e) € [r]&}

[r1 o 2] = {(p,T.Ax.e) | Vp",e", T'<T .(p’,T",¢’) € [1]e = (p+p'.T . ele’/x]) € [r2] &}
llnlzl = = A(p.T.o)|3p"p"+n<pA(p'.T.0) €]}

Mk 7] = A T,0) | V", o', T'<T o §, 0" = Fp'x"+p" <p+x A (p,T -T',0") €[]}
Va.r| = {(p, T,A.e) | VT, T'<T .(p.&",e) € [r[7"/]] g}

[Vi.r| = {(p,T,A.e) |YLT'<T .(p, T ,e) € [r][1]i]] g}

IC = 1] = {(p,T,Ae)|.EC = (4 T,e) €|r]g}

[C&] = {(p.T.,0)|.ECA (p.T,0)\ [7]} : : :
[3s.7] 2 {(p,T,0) | 3s’.(p, T,0) € [r[s Opera’r jonal f orcing semantics for monad
:)tti]jr]] =][[”ivhere VI.fI=|r[I]/i]]

T 1 = T

Rajani et al: A unifying type-theory for higher-order (amortized) cost analysis

An interesting observation

I'Ft:71
[+storet: Mk ([x]7)

STORE

pay : [p|(Mp 1) — 1
pay = Ax.run(release y = x in y)

€. FG—1 n:1—- GF
< Unit and counit of an adjunction

Categorical Models

Morphiswm in a category

Typi“g Derivation Objecfs of a category \—\R
i [D]

IfD :T v e:tisderivable, then [I] — [7]

Ifﬂl = 9),, then I[@l]] — ﬂ@zﬂ

1 1

Equational Theory Equality of Morphisms

The Cost Category C

* Previously we required that costs form an ordered monoid
» We can turn this into a category C

» Objects of C are costs 0,1,42,...

« Morphisms of C witness the order between costs

« The unit 0 and operation + form a monoidal structure on C

The Model Category X

» The model category X needs enough structure to interpret the usual linear
logic connectives &, ® , ® and -, as well as their units.

e We need a strong graded monad M : C X X —» X
« We need a strong functor P : C X X — X (contravariant in first argument)

« For every grade p there is an adjunction P(p, —) -1 M(p, —)

Graded Monads

e AfunctorM : C X X — X

e A natural transformation 7y : X — M(0,X)

» A natural transformation py , ., : M(py, M(p,, X)) = M(p; + pp, X)

/M(o,wpl,x» — M(0 + p1, X)

J M

M(p1, X) \M >M(P1,X)
T p

M(py, M(0,X)) —— M(p; + 0, X)

Graded Monads

e AfunctorM : C X X — X

e A natural transformation 7y : X — M(0,X)

» A natural transformation py , ., : M(py, M(p,, X)) = M(p; + pp, X)

M(p1, M(p2, M(p3,X)))

—F T

M(p1 + p2, M(p3, X)) M(p1, M(p2 + p3, X))

l l

M((p1 + p2) + p3, X) > M(p1+ (p2 + p3), X)

Strong Graded Monads

» Strength: ty y : X @ M(p,Y) - M(p,X ® Y)

MA

X®Y > M(0,X ®Y) M(p, X) > M(p,1® X)
\l/d@ly/ J/A y
X ® M(0,Y) 1® M(p,X)

IX®Y,Z

(X®Y)® M(p,2) > M(p,(X®Y)®Z)

|- e

XQ(YR®M(p,2)) ﬂX@M(p YoZ) —— M(p,X® (Y ®Z))

X ® M(p1, M(ps, Y)) ——3 M(p1, X ® M(ps, Y)) —25 M(py, M(p2, X ® Y))

l/id QU l/,u

X@M(pl +p2,Y) ! > M(pl +p2,X®Y)

Instances of this Model

* [he degenerate set-theoretic model

 The Kripke model of Vineet et al. (Proven in Lean)

A covariant presheaf model X = [(C, Set| which interprets ® as Day
convolution

Future Work

» Modelling linear logic exponentials !7 and subexponentials !,z

 Modelling recursion with a fixpoint operator

* Proving completeness of the categorical model

Questions?

