
David Binder, University of Kent (joint work with Dominic Orchard, Vineet Rajani and David Corfield)

Reasoning about Amortized
Cost: From Syntax to Semantics
FPDag 2026 @ Nijmegen

Part I

Fundamentals of Amortized Cost Analysis

Okasaki: Purely
Functional Data
Structures
Introduces key techniques
for analyzing the complexity
of algorithms on functional
data structures

FIFO Queues

Front Back

Enqueue Dequeue

The Two-List Implementation
External View:

Internal Representation:

Fr

Front:

Back:

We represent a queue by two singly-linked lists. The back of the queue is stored in
reverse order.

Enqueue

Fr

Front:

Back:

Fr

Front:

Back:

Before:

After:
Worst Case: O(1)

Dequeue

Fr

Front:

Back:

Before:

Fr

Front:

Back:

After:

Worst Case: O(1)

Dequeue

Fr

Front:

Back:

Before:

Fr

Front:

Back:

After:

Worst Case: O(n)

The Gist of the Banker's Method:
Store Potential in the Data Structure

Amortization with Potential

Fr

Front:

Back:

Fr

Front:

Back:

Without Potential:

With Potential:

Cost of Enqueue and Dequeue

• Enqueue: Cost 1 for cons-ing an element to the front list plus cost 1 for storing potential.

• Dequeue (simple): Cost 1 for removing the head of the back list.

• Dequeue (reverse): Use the stored potential to pay for the cost of reversing the list which 
results in a cost of 0.

• Together ensures amortized cost of O(1): Any sequence of n enqueue and dequeue 
operations costs at most O(n).

Fr

Front:

Back:

Takeaway: We need a way to store
potential within a data structure

Part II

A Type System for Amortized Cost

From Whiteboard Reasoning to Type Theory

• To track cost we use graded monads

• To represent stored potential we use a phantom type

• The type system is affine because we are not allowed to duplicate potential

• Based on V. Rajani, M. Gaboardi, D. Garg, and J. Hoffmann: 
A unifying type-theory for higher-order (amortized) cost analysis

[p]τ

Graded Monads

1

Categorical Models of Cost
Modelling Amortized Reasoning Through Adjunctions between Cost and Potential

DAVID BINDER, DAVID CORFIELD, VINEET RAJANI, and DOMINIC ORCHARD, University
of Kent, United Kingdom

Various type systems have been developed to track the cost ^ of a computation using a cost-tracking monad
M ^ g . On its own, this only allows to track the worst-case cost of a computation. If we also want to track
amortized cost, then we have to add a type [^]g which stores potential ^ with a type g , together with operations
for storing and releasing potential. In this work we build on one such system, _-amor: _-amor allows to
track cost and potential in the type system and subsumes e�ect and coe�ect-based systems, call-by-value and
call-by-name based languages. In this paper we identify the abstract properties that denotational models of
type theories for cost and potential have to satisfy: Cost and potential must be modelled by an adjoint pair of
graded functors, where the functor modelling cost forms both a graded monad and a graded comonad. We
present two concrete instances of this general abstract scheme: First, we show that the Kripke model that was
used in the original paper that introduced _-amor is an instance of the adjoint model. Second, we present a
novel model based on presheaves on a monoidal category of costs, where we model pairs and functions by
Day convolution and its right-adjoint.

CCS Concepts: • Theory of computation! Lambda calculus; Type theory.

Additional Key Words and Phrases: cost analysis, amortized complexity, categorical models

ACM Reference Format:
David Binder, David Cor�eld, Vineet Rajani, and Dominic Orchard. 2020. Categorical Models of Cost: Modelling
Amortized Reasoning Through Adjunctions between Cost and Potential. Proc. ACM Program. Lang. 1, OOPSLA,
Article 1 (January 2020), 27 pages.

1 INTRODUCTION
Due to their compositional nature, type systems are widely used to ensure di�erent correctness
properties and to track various aspects of program behavior. One program behaviour that we often
want to reason about is computational cost; speci�cally, we want to ensure that a program does
not need more time, memory or other computational resources than we expect. In this article we
consider type systems which use graded monads to track cost. Graded monads are a generalization
of ordinary monadsM g which are characterized by operations ret C and bind G = C1 in C2. The
operation ret C injects a pure term of type g into a monadic context M g , and bind G = C1 in C2
combines twomonadic computations C1 of typeM g1 and C2 of typeM g2 which depends on a variable
G of type g1 into one computation of typeM g2. These operations must additionally satisfy some
laws in order to make reasoning about monads possible. A graded monadM ? g additionally carries
a grade ? taken from some monoid (", 0, +). Both operations mention the unit and composition of
the monoid in their respective typing rules:

� ` C : g R�����
� ` ret C : M 0 g

� ` C1 : M ?1 g1 �, G : g1 ` C2 : M ?2 g2 B���
� ` bind G = C1 in C2 : M (?1 + ?2) g2

Graded monads have many applications, but in this paper we use them to track the cost of
computations. To do this we add the operation "^ (pronounced “tick”) to the language which
incurs a cost ^ and returns a term of the unit type. It is typed as follows:

Authors’ address: David Binder; David Cor�eld; Vineet Rajani; Dominic Orchard, Department of Computer Science,
University of Kent, Kennedy Building, Canterbury, CT2 7FS, United Kingdom, D.Binder@kent.ac.uk.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1

Categorical Models of Cost
Modelling Amortized Reasoning Through Adjunctions between Cost and Potential

DAVID BINDER, DAVID CORFIELD, VINEET RAJANI, and DOMINIC ORCHARD, University
of Kent, United Kingdom

Various type systems have been developed to track the cost ^ of a computation using a cost-tracking monad
M ^ g . On its own, this only allows to track the worst-case cost of a computation. If we also want to track
amortized cost, then we have to add a type [^]g which stores potential ^ with a type g , together with operations
for storing and releasing potential. In this work we build on one such system, _-amor: _-amor allows to
track cost and potential in the type system and subsumes e�ect and coe�ect-based systems, call-by-value and
call-by-name based languages. In this paper we identify the abstract properties that denotational models of
type theories for cost and potential have to satisfy: Cost and potential must be modelled by an adjoint pair of
graded functors, where the functor modelling cost forms both a graded monad and a graded comonad. We
present two concrete instances of this general abstract scheme: First, we show that the Kripke model that was
used in the original paper that introduced _-amor is an instance of the adjoint model. Second, we present a
novel model based on presheaves on a monoidal category of costs, where we model pairs and functions by
Day convolution and its right-adjoint.

CCS Concepts: • Theory of computation! Lambda calculus; Type theory.

Additional Key Words and Phrases: cost analysis, amortized complexity, categorical models

ACM Reference Format:
David Binder, David Cor�eld, Vineet Rajani, and Dominic Orchard. 2020. Categorical Models of Cost: Modelling
Amortized Reasoning Through Adjunctions between Cost and Potential. Proc. ACM Program. Lang. 1, OOPSLA,
Article 1 (January 2020), 27 pages.

1 INTRODUCTION
Due to their compositional nature, type systems are widely used to ensure di�erent correctness
properties and to track various aspects of program behavior. One program behaviour that we often
want to reason about is computational cost; speci�cally, we want to ensure that a program does
not need more time, memory or other computational resources than we expect. In this article we
consider type systems which use graded monads to track cost. Graded monads are a generalization
of ordinary monadsM g which are characterized by operations ret C and bind G = C1 in C2. The
operation ret C injects a pure term of type g into a monadic context M g , and bind G = C1 in C2
combines twomonadic computations C1 of typeM g1 and C2 of typeM g2 which depends on a variable
G of type g1 into one computation of typeM g2. These operations must additionally satisfy some
laws in order to make reasoning about monads possible. A graded monadM ? g additionally carries
a grade ? taken from some monoid (", 0, +). Both operations mention the unit and composition of
the monoid in their respective typing rules:

� ` C : g R�����
� ` ret C : M 0 g

� ` C1 : M ?1 g1 �, G : g1 ` C2 : M ?2 g2 B���
� ` bind G = C1 in C2 : M (?1 + ?2) g2

Graded monads have many applications, but in this paper we use them to track the cost of
computations. To do this we add the operation "^ (pronounced “tick”) to the language which
incurs a cost ^ and returns a term of the unit type. It is typed as follows:

Authors’ address: David Binder; David Cor�eld; Vineet Rajani; Dominic Orchard, Department of Computer Science,
University of Kent, Kennedy Building, Canterbury, CT2 7FS, United Kingdom, D.Binder@kent.ac.uk.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Grades are elements of a monoid with unit 0 and operation +

Annotating Cost

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

The user annotates those parts of the program that should incur costs.

Unit type

Honest Graded Monads

1:6 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

The system _-amor is a�ne, so De�nition 2.8 only contains rules W� for weakening and E� for
exchange, but no rule for contraction. The rule S�� allows to use subsumption both in the type of
the term 4 and in the context that we are using to type 4 .

De�nition 2.9 (Typing Rules for Logical Constants). These rules govern the logical connectives
present in the system:

U����P` unit : 1

D1
�1 ` 41 : 1

D2
�2 ` 42 : g C����U����P

�1, �2 ` 41 .case {unit) 42} : g

U����N
� ` cocase {} : >

D
� ` 4 : 0 V���

� ` 4 .case {} : g
D

�, G : g ` 4 : f
A��

� ` _G .4 : g (f

D1
�1 ` 41 : g1 (g2

D2
�2 ` 42 : g1 A��

�1, �2 ` 41 42 : g2
D

� ` 4 : f I��
� ` inl(4) : f � g

D
� ` 4 : g I��

� ` inr(4) : f � g

D1
�1 ` 4 : g1 � g2

D2
�2, G : g1 ` 41 : g3

D3
�2, G : g2 ` 42 : g3 C����S��

�1, �2 ` 4 .case {inl(G)) 41, inr(G)) 42} : g3
D1

�1 ` 41 : g1
D2

�2 ` 42 : g2 T�����
�1, �2 ` h41, 42i : g1 ⌦ g2

D1
�1 ` 41 : g1 ⌦ g2

D2
�2, G : g1,~ : g2 ` 42 : g3 C����T�����

�2, �1 ` 41 .case {hG,~i) 42} : g3
D1

� ` 41 : g1
D1

� ` 42 : g2 W���
� ` cocase {fst) 41, snd) 42} : g1 & g2

D
� ` 4 : g1 & g2 F��
� ` 4 .fst : g1

D
� ` 4 : g1 & g2 S��
� ` 4 .fst : g1

De�nition 2.10 (Typing Rules for Cost and Potential). These rules govern the operations for the
cost monadM ? g and potentials [?]g .

D1
�1 ` 41 : M ?1 g1

D2
�2, G : g1 ` 42 : M ?2 g2 B���

�1, �2 ` bind G = 41 in 42 : M (?1 + ?2) g2
D

� ` 4 : g R��
� ` ret 4 : M 0 g

0  ?
T���` "? : M ? 1

D
� ` 4 : g S����

� ` store 4 : M ? [?]g
D

� ` 4 : M 0 g R��
� ` run(4) : g

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.Any possible effect is reflected in the grade.

Overapproximation Through Subtyping

1:4 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

_G .4 and eliminated by function application 41 42. There are two types of products: Multiplicative
products g1 ⌦ g2 (pronounced “tensor”) are introduced by pairing two elements with h41, 42i and
eliminated using pattern matching 41.case {hG,~i) 42}, whereas additive products g1 & g2
(pronounced “with”) are introduced using copattern matching cocase {fst) 41, snd) 42} and
eliminated using projections 4 .fst and 4 .snd. The unit for ⌦ is 1, which is introduced by unit
and eliminated using 4 .case {unit) 4}, whereas the unit for & is >, which is introduced by an
empty cocase {} and has no elimination rule. Sums g1 � g2 are introduced using left injections
inl(4) and right injections inr(4), and eliminated using a pattern match on both alternatives
41.case {inl(G)) 42, inr(~)) 43}. The unit for � is 0 which has the elimination rule 4 .case {}
and no introduction rule. The types ⌦, �, 1, 0 are positive, or data types, whereas &, > and(are
negative, or codata types.

The cost monadM ? g comes with three operations. The expression ret 4 allows to inject a pure
term in the graded monad, bind G = 41 in 42 models the bind operation of a graded monad, and
"? is a graded monadic operation which is used to mark a computation that should be counted
with cost ? ; this operation evaluates to an element of the unit type in the operation semantics. The
operation run(4) runs a computation with cost 0; this witnesses that all e�ects that are possible in
the cost monad are tracked in the grade, and that a monadic computation at grade 0 therefore does
not use any e�ects.

Potentials are modelled using the type [?]g ; potentials can be stored using store 4 and released
using release G = 41 in 42.

2.1 Subtyping
The costs that we want to track with our system are ordered. Since these costs can also appear in
types, such as [?]g orM ? g , we obtain a subtyping order for types. This subtyping order is only
induced by the order on costs, we do not consider any other subtyping relationship based on type
structure. In particular, if we chose the discrete order from ?? for cost then we obtain the trivial
subtyping relationship which only holds between a type and itself.

De�nition 2.4 (Subtyping Derivations). The subtyping relationship is characterized by the fol-
lowing set of rules. We write S : g1 <: g2 to express that S is a derivation which shows that g1 is a
subtype of g2.

R����11 <: 1 R����>> <: > R����00 <: 0
S1

g1 <: g2
S2

g3 <: g4 S�T�����g1 ⌦ g3 <: g2 ⌦ g4

S1
g1 <: g2

S2
g3 <: g4 S�P���g1 � g3 <: g2 � g4

S1
g1 <: g2

S2
g3 <: g4 S�W���

g1 & g3 <: g2 & g4

S1
g2 <: g1

S1
g3 <: g4 S�A����g1 (g3 <: g2 (g4

?2  ?1
S

g1 <: g2 S�P��[?1]g1 <: [?2]g2
?1  ?2

S
g1 <: g2 S�M��

M ?1 g1 <: M ?2 g2
We write X : �1 <: �2 for a derivation X which proves that �1 is a subcontext of �2. This relation

is de�ned by the following two rules.

S�C��1· <: ·
X

�1 <: �2
S

g1 <: g2 S�C��2(�1, G : g1) <: (�2, G : g2)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Costs should form an ordered monoid.

This order allows for over approximation in the analysis.

Order relation on costs Subtyping

How to model amortization?

Storing Potential

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Pay k cost now to store k potential for later use.

Potential type

Releasing Potential

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

This value has potential attached to itκ1

This computation has cost κ1 + κ2

We have reduced the cost of the computation by κ1

Summary

1

Categorical Models of Cost
Modelling Amortized Reasoning Through Adjunctions between Cost and Potential

DAVID BINDER, DAVID CORFIELD, VINEET RAJANI, and DOMINIC ORCHARD, University
of Kent, United Kingdom

Various type systems have been developed to track the cost ^ of a computation using a cost-tracking monad
M ^ g . On its own, this only allows to track the worst-case cost of a computation. If we also want to track
amortized cost, then we have to add a type [^]g which stores potential ^ with a type g , together with operations
for storing and releasing potential. In this work we build on one such system, _-amor: _-amor allows to
track cost and potential in the type system and subsumes e�ect and coe�ect-based systems, call-by-value and
call-by-name based languages. In this paper we identify the abstract properties that denotational models of
type theories for cost and potential have to satisfy: Cost and potential must be modelled by an adjoint pair of
graded functors, where the functor modelling cost forms both a graded monad and a graded comonad. We
present two concrete instances of this general abstract scheme: First, we show that the Kripke model that was
used in the original paper that introduced _-amor is an instance of the adjoint model. Second, we present a
novel model based on presheaves on a monoidal category of costs, where we model pairs and functions by
Day convolution and its right-adjoint.

CCS Concepts: • Theory of computation! Lambda calculus; Type theory.

Additional Key Words and Phrases: cost analysis, amortized complexity, categorical models

ACM Reference Format:
David Binder, David Cor�eld, Vineet Rajani, and Dominic Orchard. 2020. Categorical Models of Cost: Modelling
Amortized Reasoning Through Adjunctions between Cost and Potential. Proc. ACM Program. Lang. 1, OOPSLA,
Article 1 (January 2020), 27 pages.

1 INTRODUCTION
Due to their compositional nature, type systems are widely used to ensure di�erent correctness
properties and to track various aspects of program behavior. One program behaviour that we often
want to reason about is computational cost; speci�cally, we want to ensure that a program does
not need more time, memory or other computational resources than we expect. In this article we
consider type systems which use graded monads to track cost. Graded monads are a generalization
of ordinary monadsM g which are characterized by operations ret C and bind G = C1 in C2. The
operation ret C injects a pure term of type g into a monadic context M g , and bind G = C1 in C2
combines twomonadic computations C1 of typeM g1 and C2 of typeM g2 which depends on a variable
G of type g1 into one computation of typeM g2. These operations must additionally satisfy some
laws in order to make reasoning about monads possible. A graded monadM ? g additionally carries
a grade ? taken from some monoid (", 0, +). Both operations mention the unit and composition of
the monoid in their respective typing rules:

� ` C : g R�����
� ` ret C : M 0 g

� ` C1 : M ?1 g1 �, G : g1 ` C2 : M ?2 g2 B���
� ` bind G = C1 in C2 : M (?1 + ?2) g2

Graded monads have many applications, but in this paper we use them to track the cost of
computations. To do this we add the operation "^ (pronounced “tick”) to the language which
incurs a cost ^ and returns a term of the unit type. It is typed as follows:

Authors’ address: David Binder; David Cor�eld; Vineet Rajani; Dominic Orchard, Department of Computer Science,
University of Kent, Kennedy Building, Canterbury, CT2 7FS, United Kingdom, D.Binder@kent.ac.uk.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1

Categorical Models of Cost
Modelling Amortized Reasoning Through Adjunctions between Cost and Potential

DAVID BINDER, DAVID CORFIELD, VINEET RAJANI, and DOMINIC ORCHARD, University
of Kent, United Kingdom

Various type systems have been developed to track the cost ^ of a computation using a cost-tracking monad
M ^ g . On its own, this only allows to track the worst-case cost of a computation. If we also want to track
amortized cost, then we have to add a type [^]g which stores potential ^ with a type g , together with operations
for storing and releasing potential. In this work we build on one such system, _-amor: _-amor allows to
track cost and potential in the type system and subsumes e�ect and coe�ect-based systems, call-by-value and
call-by-name based languages. In this paper we identify the abstract properties that denotational models of
type theories for cost and potential have to satisfy: Cost and potential must be modelled by an adjoint pair of
graded functors, where the functor modelling cost forms both a graded monad and a graded comonad. We
present two concrete instances of this general abstract scheme: First, we show that the Kripke model that was
used in the original paper that introduced _-amor is an instance of the adjoint model. Second, we present a
novel model based on presheaves on a monoidal category of costs, where we model pairs and functions by
Day convolution and its right-adjoint.

CCS Concepts: • Theory of computation! Lambda calculus; Type theory.

Additional Key Words and Phrases: cost analysis, amortized complexity, categorical models

ACM Reference Format:
David Binder, David Cor�eld, Vineet Rajani, and Dominic Orchard. 2020. Categorical Models of Cost: Modelling
Amortized Reasoning Through Adjunctions between Cost and Potential. Proc. ACM Program. Lang. 1, OOPSLA,
Article 1 (January 2020), 27 pages.

1 INTRODUCTION
Due to their compositional nature, type systems are widely used to ensure di�erent correctness
properties and to track various aspects of program behavior. One program behaviour that we often
want to reason about is computational cost; speci�cally, we want to ensure that a program does
not need more time, memory or other computational resources than we expect. In this article we
consider type systems which use graded monads to track cost. Graded monads are a generalization
of ordinary monadsM g which are characterized by operations ret C and bind G = C1 in C2. The
operation ret C injects a pure term of type g into a monadic context M g , and bind G = C1 in C2
combines twomonadic computations C1 of typeM g1 and C2 of typeM g2 which depends on a variable
G of type g1 into one computation of typeM g2. These operations must additionally satisfy some
laws in order to make reasoning about monads possible. A graded monadM ? g additionally carries
a grade ? taken from some monoid (", 0, +). Both operations mention the unit and composition of
the monoid in their respective typing rules:

� ` C : g R�����
� ` ret C : M 0 g

� ` C1 : M ?1 g1 �, G : g1 ` C2 : M ?2 g2 B���
� ` bind G = C1 in C2 : M (?1 + ?2) g2

Graded monads have many applications, but in this paper we use them to track the cost of
computations. To do this we add the operation "^ (pronounced “tick”) to the language which
incurs a cost ^ and returns a term of the unit type. It is typed as follows:

Authors’ address: David Binder; David Cor�eld; Vineet Rajani; Dominic Orchard, Department of Computer Science,
University of Kent, Kennedy Building, Canterbury, CT2 7FS, United Kingdom, D.Binder@kent.ac.uk.

2020. 2475-1421/2020/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1:6 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

The system _-amor is a�ne, so De�nition 2.8 only contains rules W� for weakening and E� for
exchange, but no rule for contraction. The rule S�� allows to use subsumption both in the type of
the term 4 and in the context that we are using to type 4 .

De�nition 2.9 (Typing Rules for Logical Constants). These rules govern the logical connectives
present in the system:

U����P` unit : 1

D1
�1 ` 41 : 1

D2
�2 ` 42 : g C����U����P

�1, �2 ` 41 .case {unit) 42} : g

U����N
� ` cocase {} : >

D
� ` 4 : 0 V���

� ` 4 .case {} : g
D

�, G : g ` 4 : f
A��

� ` _G .4 : g (f

D1
�1 ` 41 : g1 (g2

D2
�2 ` 42 : g1 A��

�1, �2 ` 41 42 : g2
D

� ` 4 : f I��
� ` inl(4) : f � g

D
� ` 4 : g I��

� ` inr(4) : f � g

D1
�1 ` 4 : g1 � g2

D2
�2, G : g1 ` 41 : g3

D3
�2, G : g2 ` 42 : g3 C����S��

�1, �2 ` 4 .case {inl(G)) 41, inr(G)) 42} : g3
D1

�1 ` 41 : g1
D2

�2 ` 42 : g2 T�����
�1, �2 ` h41, 42i : g1 ⌦ g2

D1
�1 ` 41 : g1 ⌦ g2

D2
�2, G : g1,~ : g2 ` 42 : g3 C����T�����

�2, �1 ` 41 .case {hG,~i) 42} : g3
D1

� ` 41 : g1
D1

� ` 42 : g2 W���
� ` cocase {fst) 41, snd) 42} : g1 & g2

D
� ` 4 : g1 & g2 F��
� ` 4 .fst : g1

D
� ` 4 : g1 & g2 S��
� ` 4 .fst : g1

De�nition 2.10 (Typing Rules for Cost and Potential). These rules govern the operations for the
cost monadM ? g and potentials [?]g .

D1
�1 ` 41 : M ?1 g1

D2
�2, G : g1 ` 42 : M ?2 g2 B���

�1, �2 ` bind G = 41 in 42 : M (?1 + ?2) g2
D

� ` 4 : g R��
� ` ret 4 : M 0 g

0  ?
T���` "? : M ? 1

D
� ` 4 : g S����

� ` store 4 : M ? [?]g
D

� ` 4 : M 0 g R��
� ` run(4) : g

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Part III

A Categorical Semantics of Cost

Existing Kripke SemanticsA Unifying Type-Theory for Higher-Order (Amortized) Cost Analysis 27:9

J1K , {(?,) , ())}
JbK , {(?,) , E) | E 2 JbK}
J!0gK , {(?,) , nil)}
J!B+1gK , {(?,) , E :: ;) |9?1, ?2 .?1 + ?2  ? ^ (?1,) , E) 2 JgK ^ (?2,) , ;) 2 J!BgK}
Jg1 ⌦ g2K , {(?,) , hhE1, E2ii) | 9?1, ?2 .?1 + ?2  ? ^ (?1,) , E1) 2 Jg1K ^ (?2,) , E2) 2 Jg2K}
Jg1 & g2K , {(?,) , hE1, E2i) | (?,) , E1) 2 Jg1K ^ (?,) , E2) 2 Jg2K}
Jg1 � g2K , {(?,) , inl(E)) | (?,) , E) 2 Jg1K} [{(?,) , inr(E)) | (?,) , E) 2 Jg2K}
J!gK , {(?,) , !4) | (0,) , 4) 2 JgKE}
Jg1 (g2K , {(?,) , _G .4) | 8? 0, 4 0,) 0<) .(? 0,) 0, 4 0) 2 Jg1KE =) (? + ? 0,) 0, 4 [4 0/G]) 2 Jg2KE}
J[=] gK , {(?,) , E) | 9? 0.? 0 + =  ? ^ (? 0,) , E) 2 JgK}}
JM^ gK , {(?,) , E) | 8^ 0, E 0,) 0<) .E +^0

) 0 E 0 =) 9? 0.^ 0 + ? 0  ? + ^ ^ (? 0,) �) 0, E 0) 2 JgK}
J8U .gK , {(?,) ,⇤.4) | 8g 0,) 0<) .(?,) 0, 4) 2 Jg [g 0/U]KE}
J88 .gK , {(?,) ,⇤.4) | 8� ,) 0<) .(?,) 0, 4) 2 Jg [�/8]KE}
J⇠) gK , {(?,) ,⇤.4) | . |= ⇠ =) (?,) , 4) 2 JgKE}
J⇠&gK , {(?,) , E) | . |= ⇠ ^ (?,) , E) 2 JgK}
J9B .gK , {(?,) , E) | 9B 0.(?,) , E) 2 Jg [B 0/B]K}
J_C 8 .gK , 5 where 8� . 5 � = Jg [�/8]K
Jg �K , JgK �

JgKE , {(?,) , 4) | 8) 0<) , E .4 +) 0 E =) (?,) �) 0, E) 2 JgK}

J�KE , {(?,) ,W) | 95 : V0AB ! P>CB .
(8G 2 dom(�) . (5 (G),) ,W (G)) 2 J�(G)KE) ^ (ÕG 2dom(�) 5 (G)  ?)}

J⌦KE , {(0,) , X) | (8G 2 dom(⌦) .(0,) , X (G)) 2 JgKE)}
Fig. 5. Model of _-amor� types

Theorem 1 is the soundness of _-amor�: If 4 is a closed term which has a statically approximated
cost of ^ units (as speci�ed in the monadic typeM^ g) and forcing 4 actually consumes ^ 0 units of
cost, then ^ 0  ^. We prove this theorem using a logical relation in Section 2.3.

Theorem 1 (Soundness). 84, E,^,^ 0, g 2)~?4 . ` 4 : M^ g ^ 4 +^0
E =) ^ 0  ^

2.3 Model of types and soundness
To prove the soundness of _-amor�, we develop a logical-relation model of its types. The model is
an extension of Pym’s semantics of BI [Pym et al. 2004] with potentials, the cost monad, and type
re�nements. We also step-index the model [Ahmed 2004] to break a circularity in its de�nition,
arising from impredicative quanti�cation over types, as in the work of Neis et al. [2011]. Because
we use step-indices, we also have augmented operational semantics that count the number of rules
(denoted)) used during evaluation. The revised judgments are written 4 +) E (pure) and 4 +^) E
(forcing). The expected details are in the technical appendix. Note that there is no connection
between) and ^ in the forcing judgment – the former is purely an artifact of our metatheoretic
proofs, while the latter is induced by " constructs in the program. Our use of step-indices, also
written) , is standard and readers not familiar with them may simply ignore them. The model
(Fig. 5) is de�ned using four relations: a value relation, an expression relation and substitution
relations for the a�ne and non-a�ne contexts. The �rst two are mutually recursive, well-founded
in the lexicographic order hstep index ()), type (g), value < expressioni.
Value relation. The value relation (denoted by J.K) gives an interpretation to _-amor� types (of

kind)~?4) as sets of triples of the form (?,) , E). Importantly, the potential ? is an upper-bound on
the ambient potential required to construct the value E . It must include potential associated with
the (types of) subexpressions of E .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 27. Publication date: January 2021.

Rajani et al: A unifying type-theory for higher-order (amortized) cost analysis

Operational forcing semantics for monad

An interesting observation

1:2 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T���
� ` "^ : M ^ 1

Return, bind and tick only allow to give a worst-case analysis of cost: if we run a program of type
M ^ g then we expect it to return a value of type g and incur at most cost ^ through the ticks which
we have used to annotate the program. A worst-case analysis is often not good enough, especially
when we analyze algorithms on functional data structures. For this reason we want to track the
amortized cost of a computation. One way to establish amortized cost bounds is to use potentials:
Cheap and frequent operations allow to store some potential, while expensive and rare operations
can release stored potential. We can re�ect this sort of reasoning in the type system by using a
potential type [^]g . This (phantom) type is used for terms of type g which store the potential ^.
The type is phantom because potentials do not exist at runtime, they are merely used to analyze
cost behaviour during typechecking. We also need operations to store and release potential; these
operations are typed as follows:

� ` C : g S����
� ` store C : M ^ ([^]g)

� ` C1 : [^1]g1 �, G : g1 ` C2 : M (^1 + ^2) g2 R������
� ` release G = C1 in C2 : M ^2 g2

The operation store C incurs some cost ^ now, which is re�ected in the monad, and attaches it
as potential in the type [^]g so that it can be used later. The operation release G = C1 in C2 uses
some potential stored with the term C1 to pay for some of the cost in the monadic computation C2.

1.1 Modelling the Adjunction Between Cost and Potential
To prove that the amortized analysis provided by the cost monad and the potential type is sound we
can use denotational models. For example, Rajani et al. [2021] develop a step-indexed Kripke model
and prove a fundamental theorem in order to establish that running a monadic computation never
exceeds the cost promised by the monad. That model is very concrete, which makes it di�cult to
combine with other language features that need to be modelled di�erently. In order to remedy this
we develop the denotational models of cost and potential more abstractly, which brings us to the
three major contributions of this paper.
Contribution 1: We describe an abstract model which models cost and potential by a family of

adjunctions between a strong graded monad and comonad (for cost) and a graded functor
(for potential).
Dominic: slight tweak to wording here.

We describe in detail the properties we require to model all features of the type system We
prove that the model is sound, i.e. we prove that every typing derivation can be interpreted
in the model.

Contribution 2: We provide a mechanization of the type system in the Lean proof assistant and
verify that the Kripke model presented by Rajani et al. [2021] is indeed an instance of the
general categorical model that we have identi�ed. This has not been observed by Rajani et al.
[2021], and proving that the necessary laws hold involves a nontrivial amount of technical
detail.

Contribution 3: We present a novel model instance which uses presheaves on amonoidal category
of costs. Presheaf models are widely used in categorical semantics, and our model shows that
they can also be used for cost and potential.

1.2 Overview
The rest of this article it is structured as follows:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Categorical Models of Cost 1:7

D1

�1 ` 41 : [?1]g1
D2

�2, G : g1 ` 42 : M (?1 + ?2) g2 R������
�1, �2 ` release G = 41 in 42 : M ?2 g2

The following de�nition is often presented as the “substitution lemma” for typing derivations.
We present it here as a de�nition instead so that we can use it in the equational theory for typing
derivations. At that place, we need this operation to express V-equality.

De�nition 2.11 (Substitution on Typing Derivations). We will formulate this as two derived opera-
tions on typing operations, once for the unary and once for the binary case.

D1
�1, G : g1 ` 41 : g2

D2
�2 ` 42 : g1 S����1�1, �2 ` 41 [42/G] : g2

D1
�1, G : g1,~ : g2 ` 41 : g3

D2
�2 ` 42 : g1

D3
�3 ` 43 : g2 S����2�1, �2, �3 ` 41 [42/G, 43/~] : g3

In both cases the simultaneous de�nition and proof proceeds by recursion on the structure of D1.

2.3 Derived Operations
Using the typing rules introduced in the previous section we can de�ne the following derived terms
which correspond to various functorial, monadic and comonadic operations.

map_potential : (g1 (g2) ([?]g1 ([?]g2
map_potential = _5 ._G .run(release ~ = G in store (5 ~))

map_cost : (g1 (g2) (M ? g1 (M ? g2

map_cost = _5 ._G .bind ~ = G in ret (5 ~)

join : M ?1 (M ?2 g) (M (?1 + ?2) g
join = _G .bind ~ = G in ~

pay : [?] (M ? g) (g

pay = _G .run(release ~ = G in ~)

2.4 Operational Semantics
There are two kinds of evaluation relation, a pure evaluation relation 4 + E which evaluates an
expression of type g to a value of type g , and a forcing relation 4 +? E which evaluates an expression
of typeM ? 0 g to a value of type g while incurring cost ? .

2.4.1 Pure Evaluation.

E�V��
E + E

4 +0 E
E�R��

run(4) + E

41 + _G .43 43 [42/G] + E
E�F��

41 42 + E

4 + cocase {fst) 41, snd) 42} 41 + E
E�W���14 .fst + E

4 + cocase {fst) 41, snd) 42} 42 + E
E�W���24 .snd + E

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

ϵ : FG → 1 η : 1 → GF

Unit and counit of an adjunction

Categorical Models

1:14 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

S-Tensor We assume there are subtyping derivations S1 : g1 <: g2 and S2 : g3 <: g4. By the
induction hypothesis there exist morphisms JS1K : Jg1K ! Jg2K and JS2K : Jg3K ! Jg4K. We
need to construct a morphism from Jg1K ⌦ Jg3K to Jg2K ⌦ Jg4K. Since ⌦ : X ⇥ X ! X is a
bifunctor we can simply choose JS1K ⌦ JS2K.

S-Potential We assume that there is a subtyping derivation S : g1  g2 and a morphism (?2 
?1) : ?2 ! ?1. By the induction hypothesis there exists a morphism JSK : Jg1K ! Jg2K. Since
% is a functor that is contravariant in its �rst argument and covariant in its second argument
we can choose % (?2  ?1, JSK).

S-Monad We assume that there is a subtyping derivation S : g1  g2 and a morphism (?1  ?2) :
?1 ! ?2. By the induction hypothesis there exists a morphism JSK : Jg1K ! Jg2K. Since" is
a functor that is covariant in both of its arguments we can pick" (?1  ?2, JSK).

⇤

4.3 Interpretation of Typing Derivations
We now give an interpretation of the typing derivations presented in Section 2.2. Every such typing
derivation is interpreted as a morphism from the interpretation of the context to the interpretation
of the type of the judgement.

T������ 4.8 (F���������� T������). If D : � ` 4 : g is derivable, then J�K
JDK
! JgK.

P����. By induction on the typing derivation; we begin with the three core rules which charac-
terize the structural properties of the system:
Var We have to �nd a morphism from JgK to JgK, which is trivially given by the identity morphism

idJgK.
Wk By the induction hypothesis we have a morphism JDK : J�K ! JgK. We construct the required

morphism as follows, where d is the right-unit law of monoidal categories:

J�K ⌦ JgK J�K ⌦ 1 J�K JgK
idJ�K⌦! dJ�K JDK

Note that this is the only place in the proof where we use the property that the unit of the
monoidal structure of ⌦ is terminal, and the only rule which makes the system a�ne instead
of linear.

Sub By the induction hypothesis we have a morphism JDK : J�2K ! JfK. By Lemma 4.7 we have
morphisms JSK : JfK ! JgK and JXK : J�1K ! J�2K. We can thus de�ne:

J�1K J�2K JfK JgKJXK JDK JSK

Ex Since we require a symmetric monoidal category we can use the braiding ⌫Jg1K,Jg2K : Jg1K⌦Jg2K '
Jg2K ⌦ Jg1K to perform the exchange of the two types in the context.

Next, we go through the simple cases for the additive connectives & and �, as well as their units >
and 0.
With From the induction hypothesis there exist morphisms JD1K : J�K ! Jg1K and JD2K : J�K !

Jg2K. By the universal property of the categorical product, we can combine those to obtain a
morphism JD1K4JD2K : J�K ! Jg1K ⇥ Jg2K, whose codomain agrees with the interpretation
of Jg1 & g2K.

Fst and Snd We show the case for the rule F��; the case for S�� is similar. By the induction
hypothesis, there exists a morphism JDK : J�K ! Jg1 & g2K. Since the interpretation Jg1 & g2K
is de�ned to be Jg1K ⇥ Jg2K, we can compose with the �rst projection of categorical products
to obtain c1 � JDK : J�K ! Jg1K.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

1:16 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

T-Bind We assume that there are derivations D1 : �1 ` 41 : M ?1 g1 and D2 : �2, G : g1 ` 42 :
M ?2 g2. By the induction hypothesis we have morphisms JD1K : J�1K ! " (?1, Jg1K) and
JD2K : J�2K ⌦ Jg1K ! " (?2, Jg2K).

J�1K ⌦ J�2K J�2K ⌦ J�1K J�2K ⌦ " (?1, Jg1K)

" (?1, J�2K ⌦ Jg1K) " (?1," (?2, Jg2K)) " (?1 + ?2, Jg2K)

fJ�1K,J�2K idJ�2K⌦JD1K

CJ�2K,Jg1K

" (id?1 ,JD2K) `?1,?2

Store We assume there is a typing derivationD : � ` 4 : g . By the induction hypothesis there exists
a morphism JDK : J�K ! JgK. We have to construct a morphism from J�K to" (?, % (?, JgK)).
Let us look at one speci�c instance of the adjunction between" and % :

q : HomX (% (?, J�K), % (?, JgK)) ' HomX (J�K," (?, % (?, JgK))) : q�1

We can thus pick q (% (id? , JDK)) as a morphism from J�K to" (?, % (?, JgK)).
Release We assume there are typing derivations D1 : �1 ` [?1]g1 and D2 : �2, G : g1 ` 42 :

M (?1 + ?2) g2. By the induction hypothesis there exist morphisms JD1K : J�1K ! % (?1, Jg1K)
and JD2K : J�2K ⌦ Jg1K ! " (?1 + ?2, Jg2K). Also, consider the following instance of the
adjunction that we will use below:

q : HomX (% (?1, J�2K ⌦ Jg1K)," (?2, Jg2K)) ' HomX (J�2K ⌦ Jg1K," (?1," (?2, Jg2K))) : q�1

This allows us to construct the desired morphism as follows:

J�1K ⌦ J�2K J�2K ⌦ J�1K J�2K ⌦ % (?1, Jg1K)

% (?1, J�2K ⌦ Jg1K) " (?2, Jg2K)

fJ�1K,J�2K idJ�2K⌦JD1K

CJ�2K,Jg1K

q�1 (`�1
?1,?2,Jg2K�JD2K)

⇤

We also introduced substitution of typing derivations as a lemma in De�nition 2.11. These are
interpreted as follows:

L���� 4.9 (I������������� �� S�����������). If D1 : �1 ` 41 : g1 and D2 : �2, G : g1 ` 42 : g2,
then Theorem 4.8 gives us morphisms JD1K : J�1K ! Jg1K and JD2K : J�2K ⌦ Jg1K ! Jg2K. We can
combine them as

JD2K � (idJ�2K ⌦ JD1K) � fJD1K,JD2K : J�1K ⌦ J�2K ! Jg2K

which agrees with the interpretation of S����1 (D1,D2) of De�nition 2.11. Similarly for S����2.

4.4 Soundness of the Model
In this subsection we are going to prove the soundness of the model with respect to the equational
theory developed in Section 3.

T������ 4.10 (S��������). If D1 ⌘ D2, then JD1K = JD2K.

P����. By induction on the derivation of D1 ⌘ D2.
Equivalence Relation The cases for ⌘-R���, ⌘-S��� and ⌘-T���� follow from the fact that

equality is an equivalence relation.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Typing Derivation Objects of a category

Morphism in a category

Equational Theory Equality of Morphisms

The Cost Category ℂ

• Previously we required that costs form an ordered monoid

• We can turn this into a category

• Objects of are costs 0,1,42,...

• Morphisms of witness the order between costs

• The unit 0 and operation + form a monoidal structure on

ℂ

ℂ

ℂ

ℂ

The Model Category 𝕏

• The model category needs enough structure to interpret the usual linear
logic connectives &, ⊕ , ⊗ and ⊸, as well as their units.

• We need a strong graded monad

• We need a strong functor (contravariant in first argument)

• For every grade p there is an adjunction

𝕏

M : ℂ × 𝕏 → 𝕏

P : ℂ × 𝕏 → 𝕏

P(p, −) ⊣ M(p, −)

Graded Monads
• A functor

• A natural transformation

• A natural transformation

M : ℂ × 𝕏 → 𝕏

ηX : X → M(0,X)

μX,p1,p2
: M(p1, M(p2, X)) → M(p1 + p2, X)

1:12 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

(4) The monoidal structure given by ⌦ has a right adjoint !:

q! : HomX (/ ⌦ . ,-) ' HomX (/ ,. ! -) : q�1
!

that is used for interpreting the function type g1 (g2.
(5) We have a strong C-graded monad " : C ⇥ X ! X used for interpreting the cost monad
M ? g . The precise de�nition of a strong-graded monad is given below in De�nitions 4.3
and 4.4. The functor" is covariant in both arguments.

(6) We have a strong functor % : C ⇥ X ! X for interpreting the potential type. The precise
de�nition of a strong functor is given in De�nition 4.5. The functor % is contravariant in its
�rst argument and covariant in its second argument.

(7) For every grade ? 2 Obj(C), there is an adjunction % (?,�) a " (?,�). We usually use the
de�nition of adjunction in terms of isomorphisms between homsets. That formulation gives
us the following isomorphism on hom objects:

q : HomX (% (?,-),.) ' HomX (- ," (?,.)) : q�1

In the following de�nition we specialize the notion of graded monads to those graded by the
monoidal category C, the cost category we de�ned above, and for the model category X as the
base. But the notion of graded monad can be generalized straightforwardly to arbitrary pairs of a
monoidal category and a category.

De�nition 4.3 (Graded Monad). [Katsumata 2014; Orchard et al. 2014] A C-graded monad" in
X consists of:
(1) A functor" : C ⇥ X! X
(2) The unit, a natural transformation [- : - ! " (0,-)
(3) The multiplication, a natural transformation `- ,?1,?2 : " (?1," (?2,-)) ! " (?1 + ?2,-)

such that the following diagrams commute:

" (0," (?1,-)) " (0 + ?1,-)

" (?1,-) " (?1,-)

" (?1," (0,-)) " (?1 + 0,-)

`

"_[

"[

`

"d

" (?1," (?2," (?3,-)))

" (?1 + ?2," (?3,-)) " (?1," (?2 + ?3,-))

" ((?1 + ?2) + ?3,-) " (?1 + (?2 + ?3),-)

`
"`

` `

"U

Furthermore, we require the additional property of tensorial strength for our graded monads:
De�nition 4.4 (Strong Graded Monad). [Katsumata 2014] A strong graded monad is a graded

monad with an additional operation, strength, which has the form

C- ,. : - ⌦ " (?,.) ! " (?,- ⌦ .)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Graded Monads
• A functor

• A natural transformation

• A natural transformation

M : ℂ × 𝕏 → 𝕏

ηX : X → M(0,X)

μX,p1,p2
: M(p1, M(p2, X)) → M(p1 + p2, X)

1:12 David Binder, David Corfield, Vineet Rajani, and Dominic Orchard

(4) The monoidal structure given by ⌦ has a right adjoint !:

q! : HomX (/ ⌦ . ,-) ' HomX (/ ,. ! -) : q�1
!

that is used for interpreting the function type g1 (g2.
(5) We have a strong C-graded monad " : C ⇥ X ! X used for interpreting the cost monad
M ? g . The precise de�nition of a strong-graded monad is given below in De�nitions 4.3
and 4.4. The functor" is covariant in both arguments.

(6) We have a strong functor % : C ⇥ X ! X for interpreting the potential type. The precise
de�nition of a strong functor is given in De�nition 4.5. The functor % is contravariant in its
�rst argument and covariant in its second argument.

(7) For every grade ? 2 Obj(C), there is an adjunction % (?,�) a " (?,�). We usually use the
de�nition of adjunction in terms of isomorphisms between homsets. That formulation gives
us the following isomorphism on hom objects:

q : HomX (% (?,-),.) ' HomX (- ," (?,.)) : q�1

In the following de�nition we specialize the notion of graded monads to those graded by the
monoidal category C, the cost category we de�ned above, and for the model category X as the
base. But the notion of graded monad can be generalized straightforwardly to arbitrary pairs of a
monoidal category and a category.

De�nition 4.3 (Graded Monad). [Katsumata 2014; Orchard et al. 2014] A C-graded monad" in
X consists of:
(1) A functor" : C ⇥ X! X
(2) The unit, a natural transformation [- : - ! " (0,-)
(3) The multiplication, a natural transformation `- ,?1,?2 : " (?1," (?2,-)) ! " (?1 + ?2,-)

such that the following diagrams commute:

" (0," (?1,-)) " (0 + ?1,-)

" (?1,-) " (?1,-)

" (?1," (0,-)) " (?1 + 0,-)

`

"_[

"[

`

"d

" (?1," (?2," (?3,-)))

" (?1 + ?2," (?3,-)) " (?1," (?2 + ?3,-))

" ((?1 + ?2) + ?3,-) " (?1 + (?2 + ?3),-)

`
"`

` `

"U

Furthermore, we require the additional property of tensorial strength for our graded monads:
De�nition 4.4 (Strong Graded Monad). [Katsumata 2014] A strong graded monad is a graded

monad with an additional operation, strength, which has the form

C- ,. : - ⌦ " (?,.) ! " (?,- ⌦ .)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Strong Graded Monads

• Strength: tX,Y : X ⊗ M(p, Y) → M(p, X ⊗ Y)Categorical Models of Cost 1:13

such that the following diagrams commute

- ⌦ . " (0,- ⌦ .)

- ⌦ " (0,.)

[

id⌦[C

" (?,-) " (?, 1 ⌦ -)

1 ⌦ " (?,-)

"_

_
C1,-

(- ⌦ .) ⌦ " (?,/) " (?, (- ⌦ .) ⌦ /)

- ⌦ (. ⌦ " (?,/)) - ⌦ " (?,. ⌦ /) " (?,- ⌦ (. ⌦ /))

C-⌦. ,/

U "U

id⌦C C

- ⌦ " (?1," (?2,.)) " (?1,- ⌦ " (?2,.)) " (?1," (?2,- ⌦ .))

- ⌦ " (?1 + ?2,.) " (?1 + ?2,- ⌦ .)

C

id⌦`

"C

`

C

De�nition 4.5 (Strong Functor). TODO

R����� 1 (U���� ��� �������� ��� �������� ��������). In this model the unit for positive and
negative products are both interpreted as the terminal element 1. This is possible due to the a�neness
of the theory, in the linear setting without weakening they have to be distinguished.

4.2 Interpretation of Types, Contexts and Subtyping
De�nition 4.6 (Interpretation of Types and Typing Contexts). The interpretation of types and

typing contexts in the model is given by:
Jg1 ⌦ g2K : Jg1K ⌦ Jg2K J1K : 1 Jg1 (g2K : Jg1K ! Jg2K
Jg1 & g2K : Jg1K ⇥ Jg2K J>K : 1 JM ? gK : " (?, JgK)
Jg1 � g2K : Jg1K + Jg2K J0K : 0 J[?]gK : % (?, JgK)

J·K : 1 J�, G : gK : J�K ⌦ JgK

The �rst thing that we have to verify is that the interpretation of types is compatible with
the syntactic subtyping relationship that we have de�ned. The following lemma witnesses this
compatibility.

L���� 4.7 (S�������� �� ��� M����). If there is a subtyping derivation S : g1 <: g2, then there
exists a corresponding morphism JSK from Jg1K to Jg2K. Similarly, if there is a subtyping derivation
X : �1 <: �2, then there is a morphism JXK in the model from J�1K to J�2K.

P����. We show the �rst part of this lemma by induction on the subtyping derivation S; we
show a subset of the relevant cases. The extension to subtyping derivations between typing contexts
is straightforward.
S-Re� We need to construct a morphism from JgK to JgK; we can just pick idJgK.
S-Trans We assume there are subtyping derivationsS1 : g1 <: g2 andS2 : g2 <: g3. By the induction

hypothesis there exist morphisms JS1K : Jg1K ! Jg2K and JS2K : Jg2K ! Jg3K. We can thus
use JS2K � JS1K : Jg1K ! Jg3K.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: January 2020.

Instances of this Model

• The degenerate set-theoretic model

• The Kripke model of Vineet et al. (Proven in Lean)

• A covariant presheaf model which interprets ⊗ as Day
convolution

𝕏 = [ℂ, Set]

Future Work

• Modelling linear logic exponentials and subexponentials

• Modelling recursion with a fixpoint operator

• Proving completeness of the categorical model

!τ !≤nτ

Questions?

