
David Binder, Ingo Skupin, Tim Süberkrüb, Klaus Ostermann University of Tübingen

De-/Refunctionalization with
Dependent Data and
CodataTypes
UMass Lowell, 2024

 1

The Core Idea

2

Booleans: The FP Version (I)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Bool defined as a data type

Observations defined by pattern
matching

3

Booleans: The OOP Version (II)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Bool defined as a codata type

Inhabitants defined by copattern matching
(implementing an interface)

4

Data Codata

Refunctionalization

Defunctionalization

5

aka FP aka OOP

De-/Refunctionalization as a principled mechanism to derive
symmetric language fragments.

6

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

7

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Programs as matrices

8

Now with Dependent Types

9

Booleans: The FP Version (II)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Martin-Löf Equality

Proof that negation is involutive

10

Booleans: The OOP Version (II)

11

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Methods with self parameters

Objects come with correctness proofs

12

With Applications to the
Expression Problem

13

14

Proof of type soundness proceeds by induction on Exp
Difficult to extend with new expression nodes

15

Expressions as interface for all theorems that must hold

16

More Examples!

17

Functions are User Defined

18

280 Anton Setzer

passing a method with an appropriate signature to them – then applying the
delegate is the same as applying that method to the arguments (this might
have side-effects). Additionally multicast delegates are considered, which are
essentially lists of delegates of the same type.

Hejlsberg claims that delegates form a more elegant concept for handling
events. When designing a graphical user interface, one usually associates with
certain widgets event handlers. If for instance the mouse is clicked on the widget,
an event handler associated with that event is called. It is applied to the parame-
ters of that event encoded as an object of an event-class (e.g. MouseEvent). From
the event object one can retrieve parameters of the event such as the coordinates
of the mouse click. The result will be void, e.g. no result is returned and only the
side-effects are relevant. Therefore, the event handler is a function Event→ void,
which could be modelled as a delegate.

Gosling’s answer to the suggestion by Hejlsberg was essentially that they
are not needed, since we already have them in Java. Higher order functions and
therefore delegates can be encoded directly in Java using inner classes. This is
the underlying idea for event handling in Java, and in this article we will explore
the encoding of higher order functions as classes in a systematic way.

Overview. In Sect. 2 we will introduce a very direct encoding of higher types
and of lambda terms into Java. This will be done in such a way that it is easy,
although sometimes tedious, to write complicated lambda terms by hand. It will
become clear that function types are already available in Java and normalization
is carried out by the builtin reduction machinery of Java (cf. normalization by
evaluation [BS91]). However, when introducing λ-terms, one would like to have
some support by suitable syntactic sugar. In Sect.3 we will show that the calculus
we obtain is call-by-value λ-calculus. In Sect. 4 we look at some applications: We
encode the untyped lambda calculus into Java, which is just one example of how
to solve domain theoretic equations, introduce a generic version of the arrow-
type, consider, how explicit overriding and method updating can be treated
using the encoding of the λ-calculus, and define a foreach loop for collections
having iterators. In Sect. 5 we explore how to encode algebraic types by defining
elements by their elimination rules. In Sect. 6 we look at, in which sense this
approach would benefit from the extension of Java by templates and how to
introduce abbreviations for functional constructs in Java. In Sect. 7 we compare
our approach with related ones in Java, C++, Perl and Python.

2 Higher Types in Java

By a Java type – we will briefly say type for this – we mean any expression
⟨typeexpr⟩, which can be used in declaring variables of the form ⟨typeexpr⟩ f or
⟨typeexpr⟩ f = · · ·. So the primitive types boolean, char, byte, short, int, long, float,
double and the reference types arrays, classes and interfaces are types. Note that
void is not a type.

A class can be seen as a bundle of functions, which have state. Therefore,
the type of functions is nothing but a class with only one method, which we call

Java as a Functional Programming Language 281

ap. Applying the function means to execute the method ap. Therefore, if A and
B are Java types, we define the type of functions from A to B, A→ B, as the
following interface (we use the valid Java identifier A B instead of A→ B):

interface A B{B ap(A x); };

If f is of type A→ B, and a is of type A, then f.ap(a) is the result of applying f
to a, for which one might introduce the abbreviation f(a).

It is convenient, to introduce the type of functions with several arguments:
(A1, . . . ,An)→ B is the set of functions with arguments of type A1, . . . ,An and
result in B. Using the valid Java identifier CA1cdotsAnD B, where C and D are
used as a substitute for brackets, and stands for →, it is defined as

interface CA1cdotsAnD B{B ap(A1 x1, . . . ,An xn); };

To improve readability, we will in the following use expressions like
(A1, . . . ,An)→ B, as if they were valid Java identifiers.

The application of f to a1, . . . , an is f.ap(a1, . . . , an). A special case is the
function type (()→ A), defined as interface (()→ A) {A ap(); };.

In order to define λ-abstraction, we make use of inner classes. We start with
two examples and then consider the general situation. The function λx.x2 of
type int→ int can be defined as

class lamxxsquare implements (int→ int){
public int ap(int x){return x ∗ x; }; };

(int→ int) lamxxsquare = new lamxxsquare();

Anonymous classes provide shorthand for this:

(int→ int) lamxxsquare = new (int→ int)(){
public int ap(int x){return x ∗ x; }; };

When defining higher type functions, we need to pass parameters to nested inner
classes. An inner class has access to instance variables and methods of classes, in
the scope of which it is, but only to final local variables and parameters of meth-
ods. So, in order to make use of bound variables in λ-terms, we need to declare
them final. Parameters can be declared final when introducing them. As an ex-
ample, we introduce the λ-term λf.λx.f(x+1) of type (int→ int)→ (int→ int).
Depending on the parameter f we introduce λx.f(x + 1), which is introduced by
an inner class. The code reads as follows:

public ((int→ int)→ (int→ int)) lamflamxfxplusone
= new ((int→ int)→ (int→ int)) (){

public (int→ int) ap (final (int→ int) f){
return new (int→ int) (){

public int ap(final int x){return f.ap(x + 1); }; }; }; };

We introduce in a position, where an expression of type (A1, . . . ,An)→ A is
required, λ(A1 a1, . . . ,An an)→ {⟨code⟩}; (a corresponding Java syntax would

A. Setzer, 2003: Java as a Functional Programming Language

19

Type Theory based on Dependent

Inductive and Coinductive Types

Henning Basold
Radboud University
CWI, Amsterdam
h.basold@cs.ru.nl

Herman Geuvers
Radboud University

Technical University Eindhoven
herman@cs.ru.nl

Abstract

We develop a dependent type theory that is based purely on in-
ductive and coinductive types, and the corresponding recursion and
corecursion principles. This results in a type theory with a small
set of rules, while still being fairly expressive. For example, all
well-known basic types and type formers that are needed for us-
ing this type theory as a logic are definable: propositional con-
nectives, like falsity, conjunction, disjunction, and function space,
dependent function space, existential quantification, equality, natu-
ral numbers, vectors etc. The reduction relation on terms consists
solely of a rule for recursion and a rule for corecursion. The reduc-
tion relations for well-known types arise from that. To further sup-
port the introduction of this new type theory, we also prove funda-
mental properties of its term calculus. Most importantly, we prove
subject reduction and strong normalisation of the reduction rela-
tion, which gives computational meaning to the terms.

The presented type theory is based on ideas from categorical
logic that have been investigated before by the first author, and
it extends Hagino’s categorical data types to a dependently typed
setting. By basing the type theory on concepts from category theory
we maintain the duality between inductive and coinductive types,
and it allows us to describe, for example, the function space as a
coinductive type.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

Keywords Dependent Types, Inductive Types, Coinductive Types,
Fibrations

1. Introduction

In this paper, we develop a type theory that is based solely on de-
pendent inductive and coinductive types. By this we mean that the
only way to form new types is by specifying the type of their cor-
responding constructors or destructors, respectively. From such a
specification, we get the corresponding recursion and corecursion
principles. One might be tempted to think that such a theory is
relatively weak as, for example, there is no function space type.
However, as it turns out, the function space is definable as a coin-
ductive type. Other type formers, like the existential quantifier, that

[Copyright notice will appear here once ’preprint’ option is removed.]

are needed in logic, are definable as well. Thus, the type theory we
present in this paper encompasses intuitionistic predicate logic.

Why do we need another type theory, especially since Martin-
Löf type theory (MLTT) (Martin-Löf 1975) or the calculus of in-
ductive constructions (CoIC) (Paulin-Mohring 1993; Werner 1994;
Bertot and Castéran 2004) are well-studied frameworks for intu-
itionistic logic? The main reason is that the existing type theories
have no explicit dependent coinductive types. Giménez (Giménez
1995) discusses an extension of the CoIC with coinductive types
and guarded recursive schemes but proves no properties about the
conversion relation. On the other hand, Sacchini (Sacchini 2013)
extended the CoC with streams, and proves subject reduction and
strong normalisation. However, the problem of limited support for
general coinductive types remains. Finally, we should also mention
that general coinductive types are available in implementations like
Coq (Coq Development Team 2012), which is based on (Giménez
1995), Agda (Agda 2015) and Nuprl (Constable 1997). Yet, none
of these has a formal justification, and Coq’s coinductive types are
even known to have problems (e.g. related to subject reduction).

One might argue that dependent coinductive types can be en-
coded through inductive types, see (Ahrens et al. 2015; Basold
2015). However, it is not clear whether such an encoding gives rise
to a good computation principle in an intensional type theory such
as MLTT or CoIC, see (cLab 2016). This becomes an issue once
we try to prove propositions about terms of coinductive type.

Other reasons for considering a new type theory are of foun-
dational interest. First, taking inductive and coinductive types as
core of the type theory reduces the number of deduction rules con-
siderably compared to, for example, MLTT with W- and M-types.
Second, it is an interesting fact that the (dependent) function space
can be described as a coinductive type. This is well-known in cat-
egory theory but we do not know of any treatment of this fact in
type theories. Thus the presented type theory allows us to deepen
our understanding of coinductive types.

Contributions Having discussed the raison d’être of this paper,
let us briefly mention the technical contributions. First of all, we
introduce the type theory and show how important logical operators
can be represented in it. We also discuss some other basic examples,
including one that shows the difference to existing theories with
coinductive types. Second, we show that computations of terms,
given in form of a reduction relation, are meaningful, in the sense
that the reduction relation preserves types (subject reduction) and
that all computations are terminating (strong normalisation). Thus,
under the propositions-as-types interpretation, our type theory can
serve as formal framework for intuitionistic reasoning.

Related Work A major source of inspiration for the setup of our
type theory is categorical logic. Especially, the use of fibrations,
brought forward in (Jacobs 1999), helped a great deal in under-

1 2016/5/10

ar
X

iv
:1

60
5.

02
20

6v
1

 [c
s.L

O
]

7
M

ay
 2

01
6

Functions are User-Defined

20

Deriving Dependently-Typed OOP from First Principles 7

class spec: PR
public methods:
store: X × A → X
read: X → {error} + A
empty: X → X

assertions:
s.empty.read = error
s.read = error

⊢ s.store(a).read = a
s.read = a

⊢ s.store(b).read = a
creation:
new.read = error

end class spec

(a) Original specification

codata PR {
store(a: A): PR,
read: MaybeA,
empty: PR,
-- | Reading from the empty buffer yields an error
(s: PR).assert_empty: Eq(MaybeA, s.empty.read, Error),
-- | We can store an element into an empty buffer
(s: PR).assert_empty_store(a: A)

: Eq(MaybeA, s.read, Error) -> Eq(MaybeA, s.store(a).read, Just(a)),
-- | We cannot replace the element in the buffer without calling `empty`
(s: PR).assert_persistent(a b: A)

: Eq(MaybeA, s.read, Just(a)) -> Eq(MaybeA, s.store(b).read, Just(a)) }

(b) Implementation in our system.
Fig. 5. Persistent read (PR) specification for one-element buffers from Jacobs [1995].

codata Buffer(m: Nat) {
Buffer(S(n)).read(n: Nat): Pair(Bool, Buffer(n)) }

codef EmptyBuffer: Buffer(Z) { read(n) absurd }
codef Singleton(b: Bool): Buffer(S(Z)) { read(n) => MkPair(Bool, Buffer(Z), b, EmptyBuffer) }

We can see that, as usual for dependent (co)pattern matching, infeasible pattern matches may
arise which need to be marked as absurd. That is, when we implement the buffer interface for the
empty buffer we don’t have to implement the read method since it can never be called.

However, in this work, we go beyond indexed codata types, which admit an intrinsic verification
style. We also want to support the extrinsic approach, where we want to separate our objects from
their specifications. Jacobs [1995] provides us with an initial concept of how to attain that goal. He
proposes a system of coalgebraic specifications that can be used to verify object-oriented classes.
As an example, Figure 5a shows a coalgebraic specification for a one-element buffer that exhibits
persistent read (PR) behavior: After an element has been stored, it cannot be replaced using the
storemethod. Instead, one needs to call the method empty to explicitly empty the buffer. Reading
from the empty buffer returns an error.This specification of the buffer is given as a set of assertions
that reference the buffer state s.

In our system, we can realize this concept using self-parameters on destructors, allowing us
to express specifications as observations on codata types. The codata type in Figure 5 defines the
verified interface for persistent read buffers in our system. Similarly, we can apply this approach
to express verified interfaces such as functors or monads.

2.3 Dependent Functions
Unlike in most other dependent type theories, the Π-type of dependent functions is not part of our
core theory, but can be defined in a library. The Π-type is defined as a codata type indexed over a
type family p, for which we use the ordinary non-dependent function type:
-- | Non-dependent Functions
codata Fun(a b: Type) {

Fun(a, b).ap(a b: Type, x: a): b }
-- | Dependent Functions
codata Π(a: Type, p: a -> Type) {

Π(a, p).dap(a: Type, p: a -> Type, x: a): p.ap(a, Type, x) }

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For

"a -> b" is syntactic sugar for "Fun(a,b)"

Defined by dependent function application "dap"

Positive and Negative Pairs

21

129:8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For
instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section we showed how to define the Π-type. For the Π-type we had no choice but
to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data or
codata type.This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types are
defined as a codata type with two projections, where the second projection mentions the result of
the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-level inference rules,
cf. Garner [2009].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For
instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section we showed how to define the Π-type. For the Π-type we had no choice but
to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data or
codata type.This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types are
defined as a codata type with two projections, where the second projection mentions the result of
the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-level inference rules,
cf. Garner [2009].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Defined by pairing constructor Defined by projections
Corresponds to ⊗ in Linear Logic Corresponds to & in Linear Logic

Weak and Strong Sigma Types

22

8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section, we showed how to define the Π-type. For the Π-type we had no choice
but to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data
or codata type. This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types
are defined as a codata type with two projections, where the second projection mentions the result
of the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

But why should we care about these two alternative encodings of the Σ-type? Take, for example,
Eisenberg et al. [2021] who discuss the addition of existential types to Haskell. Since Haskell both
is lazy and supports type erasure, Eisenberg et al. are driven to a design that uses strong existential
types. We think that by using the framework of data and codata types we can make these kind of
differences even clearer.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-order inference rules,
cf. Garner [2009].

8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section, we showed how to define the Π-type. For the Π-type we had no choice
but to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data
or codata type. This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types
are defined as a codata type with two projections, where the second projection mentions the result
of the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

But why should we care about these two alternative encodings of the Σ-type? Take, for example,
Eisenberg et al. [2021] who discuss the addition of existential types to Haskell. Since Haskell both
is lazy and supports type erasure, Eisenberg et al. are driven to a design that uses strong existential
types. We think that by using the framework of data and codata types we can make these kind of
differences even clearer.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-order inference rules,
cf. Garner [2009].

Linked by De-/Refunctionalization

Q: Are there also two ways to
define functions?

23

A: Yes! R . Garner: On the strength of dependent products in the
 type theory of Martin-Löf.

A more traditional OOP example

24

Deriving Dependently-Typed OOP from First Principles 129:7

class spec: PR
public methods:
store: X × A → X
read: X → {error} + A
empty: X → X

assertions:
s.empty.read = error
s.read = error

⊢ s.store(a).read = a
s.read = a

⊢ s.store(b).read = a
creation:
new.read = error

end class spec

(a) Original specification

codata PR {
store(a: A): PR,
read: MaybeA,
empty: PR,
-- | Reading from the empty buffer yields an error
(s: PR).assert_empty: Eq(MaybeA, s.empty.read, Error),
-- | We can store an element into an empty buffer
(s: PR).assert_empty_store(a: A)

: Eq(MaybeA, s.read, Error) -> Eq(MaybeA, s.store(a).read, Just(a)),
-- | We cannot replace the element in the buffer without calling `empty`
(s: PR).assert_persistent(a b: A)

: Eq(MaybeA, s.read, Just(a)) -> Eq(MaybeA, s.store(b).read, Just(a)) }

(b) Implementation in our system.
Fig. 5. Persistent read (PR) specification for one-element buffers from Jacobs [1995].

that observations are called only on objects which are in the right state. This can be seen in the
following example, where the observation read may be called only on non-empty buffers:2
codata Buffer(m: Nat) {

Buffer(S(n)).read(n: Nat): Pair(Bool, Buffer(n)) }
codef EmptyBuffer: Buffer(Z) { read(n) absurd }
codef Singleton(b: Bool): Buffer(S(Z)) { read(n) => MkPair(Bool, Buffer(Z), b, EmptyBuffer) }

We can see that, as usual for dependent (co)pattern matching, infeasible pattern matches may
arise which need to be marked as absurd. That is, when we implement the buffer interface for the
empty buffer we don’t have to implement the read method since it can never be called.

However, in this work, we go beyond indexed codata types, which admit an intrinsic verification
style. We also want to support the extrinsic approach, where we want to separate our objects from
their specifications. Jacobs [1995] provides us with an initial concept of how to attain that goal. He
proposes a system of coalgebraic specifications that can be used to verify object-oriented classes.
As an example, Figure 5a shows a coalgebraic specification for a one-element buffer that exhibits
persistent read (PR) behavior: After an element has been stored, it cannot be replaced using the
storemethod. Instead, one needs to call the method empty to explicitly empty the buffer. Reading
from the empty buffer returns an error.This specification of the buffer is given as a set of assertions
that reference the buffer state s.

In our system, we can realize this concept using self-parameters on destructors, allowing us
to express specifications as observations on codata types. The codata type in Figure 5 defines the
verified interface for persistent read buffers in our system. Similarly, we can apply this approach
to express verified interfaces such as functors or monads.

2.3 Dependent Functions
Unlike in most other dependent type theories, the Π-type of dependent functions is not part of our
core theory, but can be defined in a library. The Π-type is defined as a codata type indexed over a
type family p, for which we use the ordinary non-dependent function type. The notation a -> b
used in the definition of dependent functions is just syntactic sugar for Fun(a,b).
-- | Non-dependent Functions
codata Fun(a b: Type) {

Fun(a, b).ap(a b: Type, x: a): b }
-- | Dependent Functions
codata Π(a: Type, p: a -> Type) {

Π(a, p).dap(a: Type, p: a -> Type, x: a): p.ap(a, Type, x) }

2Note that the parameter 𝑛 occurs bound in the type Buffer(S(n)) on which we can call the observation read, and is
bound in the argument list read(n: Nat).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Deriving Dependently-Typed OOP from First Principles 129:7

class spec: PR
public methods:
store: X × A → X
read: X → {error} + A
empty: X → X

assertions:
s.empty.read = error
s.read = error

⊢ s.store(a).read = a
s.read = a

⊢ s.store(b).read = a
creation:
new.read = error

end class spec

(a) Original specification

codata PR {
store(a: A): PR,
read: MaybeA,
empty: PR,
-- | Reading from the empty buffer yields an error
(s: PR).assert_empty: Eq(MaybeA, s.empty.read, Error),
-- | We can store an element into an empty buffer
(s: PR).assert_empty_store(a: A)

: Eq(MaybeA, s.read, Error) -> Eq(MaybeA, s.store(a).read, Just(a)),
-- | We cannot replace the element in the buffer without calling `empty`
(s: PR).assert_persistent(a b: A)

: Eq(MaybeA, s.read, Just(a)) -> Eq(MaybeA, s.store(b).read, Just(a)) }

(b) Implementation in our system.
Fig. 5. Persistent read (PR) specification for one-element buffers from Jacobs [1995].

that observations are called only on objects which are in the right state. This can be seen in the
following example, where the observation read may be called only on non-empty buffers:2
codata Buffer(m: Nat) {

Buffer(S(n)).read(n: Nat): Pair(Bool, Buffer(n)) }
codef EmptyBuffer: Buffer(Z) { read(n) absurd }
codef Singleton(b: Bool): Buffer(S(Z)) { read(n) => MkPair(Bool, Buffer(Z), b, EmptyBuffer) }

We can see that, as usual for dependent (co)pattern matching, infeasible pattern matches may
arise which need to be marked as absurd. That is, when we implement the buffer interface for the
empty buffer we don’t have to implement the read method since it can never be called.

However, in this work, we go beyond indexed codata types, which admit an intrinsic verification
style. We also want to support the extrinsic approach, where we want to separate our objects from
their specifications. Jacobs [1995] provides us with an initial concept of how to attain that goal. He
proposes a system of coalgebraic specifications that can be used to verify object-oriented classes.
As an example, Figure 5a shows a coalgebraic specification for a one-element buffer that exhibits
persistent read (PR) behavior: After an element has been stored, it cannot be replaced using the
storemethod. Instead, one needs to call the method empty to explicitly empty the buffer. Reading
from the empty buffer returns an error.This specification of the buffer is given as a set of assertions
that reference the buffer state s.

In our system, we can realize this concept using self-parameters on destructors, allowing us
to express specifications as observations on codata types. The codata type in Figure 5 defines the
verified interface for persistent read buffers in our system. Similarly, we can apply this approach
to express verified interfaces such as functors or monads.

2.3 Dependent Functions
Unlike in most other dependent type theories, the Π-type of dependent functions is not part of our
core theory, but can be defined in a library. The Π-type is defined as a codata type indexed over a
type family p, for which we use the ordinary non-dependent function type. The notation a -> b
used in the definition of dependent functions is just syntactic sugar for Fun(a,b).
-- | Non-dependent Functions
codata Fun(a b: Type) {

Fun(a, b).ap(a b: Type, x: a): b }
-- | Dependent Functions
codata Π(a: Type, p: a -> Type) {

Π(a, p).dap(a: Type, p: a -> Type, x: a): p.ap(a, Type, x) }

2Note that the parameter 𝑛 occurs bound in the type Buffer(S(n)) on which we can call the observation read, and is
bound in the argument list read(n: Nat).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

B. Jacobs, 1995: Objects and classes, coalgebraically

Codata Encodings of Natural
Numbers

25

26

Deriving Dependently-Typed OOP from First Principles 9

2.5 Codata Encodings of Natural Numbers
Starting with the inception of the lambda calculus, researchers have been interested in functional
encodings of data types such as booleans, natural numbers and lists. Classical examples of func-
tional encodings are the Church, Scott and Parigot encodings of data types (cf. Geuvers [2014];
Koopman et al. [2014]). Functions are from our perspective just one particular instance of a codata
type, so we are interested in the more general problem of codata encodings instead of functional
encodings. Most codata encodings of data types can be obtained by refunctionalizing a data type
with an appropriate observation.That the Church encoding can be obtained from refunctionalizing
a program with Peano numbers and an iter function has already been observed by Ostermann
and Jabs [2018]; we restate this example in Figure 6.

data Nat { Z, S(p: Nat) }
def Nat.iter(A: Type, z: A, s: A -> A): A {

Z => z,
S(p) => s.ap(A, A, p.iter(A, z, s)) }

(a) Data variant

codata Nat { iter(A: Type, z: A, s: A -> A): A }
codef S(p: Nat): Nat {

iter(A, z, s) => s.ap(A, A, p.iter(A, z, s)) }
codef Z: Nat { iter(A, z, s) => z }

(b) Codata variant
Fig. 6. The Church encoding as a refunctionalized program on Peano numbers.

We can observe that the codata type in Figure 6b which represents the Church encoding of
natural numbers is not recursive. This corresponds to the well-known theorem that Church encod-
ings can be typed in pure system F. If we apply the same method to obtain the Scott or Parigot
encoding of natural numbers, then we can observe that the resulting codata type is recursive. This
corresponds to the other well-known theorem that these encodings can not be typed in pure Sys-
tem F and require recursive types.

We can even go one step further. Geuvers [2001] showed that these previous encodings cannot
express induction or dependent elimination. One way to obtain typed functional encodings which
can express induction is to add a form of self types to the system; this kind of encoding was
introduced by Fu and Stump [2014]. While it is hard to prove an exact correspondence, we think
that the essential idea of the encoding of Fu and Stump can be expressed in our system in Figure 7
and Figure 8.

codef StepFun(P: Nat -> Type): Fun(Nat, Type) {
ap(_, _, x) => P.ap(Nat, Type, x) -> P.ap(Nat, Type, S(x)) }

data Nat { S(m: Nat), Z }
def (n: Nat).ind(P: Nat -> Type, base: P.ap(Nat, Type, Z), step: Π(Nat, StepFun(P)))

: P.ap(Nat, Type, n) {
S(m) =>

step.dap(Nat, StepFun(P), m)
.ap(P.ap(Nat, Type, m), P.ap(Nat, Type, S(m)), m.ind(P, base, step)),

Z => base }

Fig. 7. The data type of natural numbers with an induction principle.

In Figure 7 we have encoded induction using a helper codata type StepFun which encodes the
induction step for a given predicate 𝑃 on natural numbers. Induction is then expressed as the
observation ind on a natural number 𝑛 which expects the base case and the induction step of the
induction as arguments. The argument 𝑛 on which we define the observation occurs itself in the
return type. Refunctionalization of this program results in Figure 8.

Deriving Dependently-Typed OOP from First Principles 9

2.5 Codata Encodings of Natural Numbers
Starting with the inception of the lambda calculus, researchers have been interested in functional
encodings of data types such as booleans, natural numbers and lists. Classical examples of func-
tional encodings are the Church, Scott and Parigot encodings of data types (cf. Geuvers [2014];
Koopman et al. [2014]). Functions are from our perspective just one particular instance of a codata
type, so we are interested in the more general problem of codata encodings instead of functional
encodings. Most codata encodings of data types can be obtained by refunctionalizing a data type
with an appropriate observation.That the Church encoding can be obtained from refunctionalizing
a program with Peano numbers and an iter function has already been observed by Ostermann
and Jabs [2018]; we restate this example in Figure 6.

data Nat { Z, S(p: Nat) }
def Nat.iter(A: Type, z: A, s: A -> A): A {

Z => z,
S(p) => s.ap(A, A, p.iter(A, z, s)) }

(a) Data variant

codata Nat { iter(A: Type, z: A, s: A -> A): A }
codef S(p: Nat): Nat {

iter(A, z, s) => s.ap(A, A, p.iter(A, z, s)) }
codef Z: Nat { iter(A, z, s) => z }

(b) Codata variant
Fig. 6. The Church encoding as a refunctionalized program on Peano numbers.

We can observe that the codata type in Figure 6b which represents the Church encoding of
natural numbers is not recursive. This corresponds to the well-known theorem that Church encod-
ings can be typed in pure system F. If we apply the same method to obtain the Scott or Parigot
encoding of natural numbers, then we can observe that the resulting codata type is recursive. This
corresponds to the other well-known theorem that these encodings can not be typed in pure Sys-
tem F and require recursive types.

We can even go one step further. Geuvers [2001] showed that these previous encodings cannot
express induction or dependent elimination. One way to obtain typed functional encodings which
can express induction is to add a form of self types to the system; this kind of encoding was
introduced by Fu and Stump [2014]. While it is hard to prove an exact correspondence, we think
that the essential idea of the encoding of Fu and Stump can be expressed in our system in Figure 7
and Figure 8.

codef StepFun(P: Nat -> Type): Fun(Nat, Type) {
ap(_, _, x) => P.ap(Nat, Type, x) -> P.ap(Nat, Type, S(x)) }

data Nat { S(m: Nat), Z }
def (n: Nat).ind(P: Nat -> Type, base: P.ap(Nat, Type, Z), step: Π(Nat, StepFun(P)))

: P.ap(Nat, Type, n) {
S(m) =>

step.dap(Nat, StepFun(P), m)
.ap(P.ap(Nat, Type, m), P.ap(Nat, Type, S(m)), m.ind(P, base, step)),

Z => base }

Fig. 7. The data type of natural numbers with an induction principle.

In Figure 7 we have encoded induction using a helper codata type StepFun which encodes the
induction step for a given predicate 𝑃 on natural numbers. Induction is then expressed as the
observation ind on a natural number 𝑛 which expects the base case and the induction step of the
induction as arguments. The argument 𝑛 on which we define the observation occurs itself in the
return type. Refunctionalization of this program results in Figure 8.

The Church Encoding

27

The Fu-Stump Encoding

Deriving Dependently-Typed OOP from First Principles 9

2.5 Codata Encodings of Natural Numbers
Starting with the inception of the lambda calculus, researchers have been interested in functional
encodings of data types such as booleans, natural numbers and lists. Classical examples of func-
tional encodings are the Church, Scott and Parigot encodings of data types (cf. Geuvers [2014];
Koopman et al. [2014]). Functions are from our perspective just one particular instance of a codata
type, so we are interested in the more general problem of codata encodings instead of functional
encodings. Most codata encodings of data types can be obtained by refunctionalizing a data type
with an appropriate observation.That the Church encoding can be obtained from refunctionalizing
a program with Peano numbers and an iter function has already been observed by Ostermann
and Jabs [2018]; we restate this example in Figure 6.

data Nat { Z, S(p: Nat) }
def Nat.iter(A: Type, z: A, s: A -> A): A {

Z => z,
S(p) => s.ap(A, A, p.iter(A, z, s)) }

(a) Data variant

codata Nat { iter(A: Type, z: A, s: A -> A): A }
codef S(p: Nat): Nat {

iter(A, z, s) => s.ap(A, A, p.iter(A, z, s)) }
codef Z: Nat { iter(A, z, s) => z }

(b) Codata variant
Fig. 6. The Church encoding as a refunctionalized program on Peano numbers.

We can observe that the codata type in Figure 6b which represents the Church encoding of
natural numbers is not recursive. This corresponds to the well-known theorem that Church encod-
ings can be typed in pure system F. If we apply the same method to obtain the Scott or Parigot
encoding of natural numbers, then we can observe that the resulting codata type is recursive. This
corresponds to the other well-known theorem that these encodings can not be typed in pure Sys-
tem F and require recursive types.

We can even go one step further. Geuvers [2001] showed that these previous encodings cannot
express induction or dependent elimination. One way to obtain typed functional encodings which
can express induction is to add a form of self types to the system; this kind of encoding was
introduced by Fu and Stump [2014]. While it is hard to prove an exact correspondence, we think
that the essential idea of the encoding of Fu and Stump can be expressed in our system in Figure 7
and Figure 8.

codef StepFun(P: Nat -> Type): Fun(Nat, Type) {
ap(_, _, x) => P.ap(Nat, Type, x) -> P.ap(Nat, Type, S(x)) }

data Nat { S(m: Nat), Z }
def (n: Nat).ind(P: Nat -> Type, base: P.ap(Nat, Type, Z), step: Π(Nat, StepFun(P)))

: P.ap(Nat, Type, n) {
S(m) =>

step.dap(Nat, StepFun(P), m)
.ap(P.ap(Nat, Type, m), P.ap(Nat, Type, S(m)), m.ind(P, base, step)),

Z => base }

Fig. 7. The data type of natural numbers with an induction principle.

In Figure 7 we have encoded induction using a helper codata type StepFun which encodes the
induction step for a given predicate 𝑃 on natural numbers. Induction is then expressed as the
observation ind on a natural number 𝑛 which expects the base case and the induction step of the
induction as arguments. The argument 𝑛 on which we define the observation occurs itself in the
return type. Refunctionalization of this program results in Figure 8.

10 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

codef StepFun(P: Nat -> Type): Fun(Nat, Type) {
ap(_, _, x) => P.ap(Nat, Type, x) -> P.ap(Nat, Type, S(x)) }

codata Nat {
(n: Nat).ind(P: Nat -> Type, base: P.ap(Nat, Type, Z), step: Π(Nat, StepFun(P)))

: P.ap(Nat, Type, n) }
codef Z: Nat { ind(P, base, step) => base }
codef S(m: Nat): Nat {

ind(P, base, step) =>
step.dap(Nat, StepFun(P), m)

.ap(P.ap(Nat, Type, m), P.ap(Nat, Type, S(m)), m.ind(P, base, step)) }

Fig. 8. The encoding of Fu and Stump can be obtained by refunctionalizing the program in Figure 7.

We think that this is further evidence that the self-parameters we introduced to the system occur
naturally when we go from the non-dependent to the dependent setting.

3 CASE STUDY
We will now further illustrate the benefits of dependently typed object-oriented programming
in a small case study. For this, we create a mockup of a dependently typed web server. We will
observe that we can conveniently extend both the supported routes of the web server and the
supported methods to access these routes. We will also see how we can conveniently state and
enforce properties in intrinsic as well as in extrinsic style.

3.1 A Functional Web Server
We start in the familiar realm of functional programming. For the purpose of this demonstration,
we will create a simple web server that allows all users to read, but only authenticated users to
increment a counter. For this, we track user sessions using the State type shown below. As an
instance of intrinsic verification, we track on the type level whether the user is authenticated.
Possible responses from the server are specified by the Response type.
codata User { hasCredentials: Bool }
codata State(loggedIn: Bool) {

State(False).login(u: User): State(u.hasCredentials),
State(True).logout: State(False),
State(True).increment: State(True),
State(True).set(n: Nat): State(True),
State(b).counter(b: Bool): Nat }

data Response { Forbidden, Return(n: Nat) }

Our web server should accept a couple of HTTP request methods (get, post, …) for a set of
routes (Index, Admin, …).
data Route { Index }
def Route.requiresLogin: Bool { Index => False }
def (self: Route).get: State(self.requiresLogin) -> Response {

Index => \state. Return(state.counter(False)) }

Adding support for a new request method is as simple as adding a function. For instance, we want
to handle post requests, even though we forbid them for the Index route:
def (self: Route).post: State(self.requiresLogin) -> ×₋(State(self.requiresLogin), Response) {

Index =>
\state. comatch {

fst(a, b) => state,
snd(a, b) => Forbidden } }

3.2 Adding New Routes in Object-Oriented Style
While adding new methods is a local change, adding a new route in the functional representation
requires touching all pattern matches on Route in the program. Therefore, before adding a route
to increment the counter on a POST request, let us refunctionalize Route to its object-oriented
decomposition:

Abbreviation for Induction Step

Fu & Stump, 2014: Self Types for Dependently-Typed Lambda Encodings

Problems

28

Judgemental Equality and
Consistency are Difficult

29

Judgemental Equality must be Preserved (I)

30

129:12 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

4.1 Judgmental Equality of Comatches
Problem. For most dependently typed languages, the term 𝜆𝑥 .𝑥 is judgmentally equal to the term
𝜆𝑦.𝑦, and likewise 𝜆𝑥 .2 + 2 and 𝜆𝑥 .4 are considered equal. Equating such terms becomes a prob-
lem, however, if we want to defunctionalize the programs which contain them. Different lambda
abstractions in a program are defunctionalized to different constructors, which are then no longer
judgmentally equal. Let us illustrate the problem with an example.

Consider the following proof that 𝜆𝑦 .𝑦 is the same function from natural numbers to natural
numbers as 𝜆𝑧 .𝑧. We prove this fact using a third lambda abstraction 𝜆𝑥 .𝑥 as an argument to the
reflexivity constructor.
codata Fun(a b: Type) { Fun(a, b).ap(a b: Type, x: a): b }
Refl(Fun(Nat, Nat), \x. x) : Eq(Fun(Nat, Nat), \y. y, \z. z)

If we defunctionalize this program, then each of these three lambda abstractions becomes one
constructor of the data type. However since different constructors are not judgmentally equal, the
following defunctionalized program no longer typechecks.
data Fun(a b: Type) { F1: Fun(Nat, Nat), F2: Fun(Nat, Nat), F3: Fun(Nat, Nat) }
def Fun(a, b).ap(a b: Type, x: a): b { F1 => x, F2 => x, F3 => x }
Refl(Fun(Nat, Nat), F1) : Eq(Fun(Nat, Nat), F2, F3)

Here is the gist of the problem: Judgmental equality must be preserved by defunctionalization and
refunctionalization. This means that if we don’t want to treat different constructors of a data type
as judgmentally equal, then we cannot treat all 𝛼-𝛽-equivalent comatches as judgmentally equal
either.

It is not impossible to devise a scheme which lifts judgmentally equal comatches to the same
constructors. However, we decided against this as it leads to confusing behavior. First, de- and
refunctionalization would no longer be inverse transformations at least under syntactic equality.
Second, such an attempt would necessarily be a conservative approximation as program equiv-
alence is undecidable in general. In practice, that would mean that some comatches would be
collapsed to the same constructor during lifting, while others would not.

Solution. Note that the opposite approach—never equating any comatches—doesn’t work either,
since typingwould then no longer be closed under substitution. For example, if 𝑓 is a variable stand-
ing for a function from natural numbers to natural numbers, then the term Refl(Fun(Nat,Nat), 𝑓)
is a proof of the proposition Eq(Fun(Nat,Nat), 𝑓 , 𝑓). But we could not substitute a comatch 𝜆𝑦 .𝑦
for 𝑓 , since the result would no longer typecheck. We therefore have to find a solution between
these two extremes.

Our solution consists of always considering local comatches together with a name5. Only co-
matches which have the same name are judgmentally equal, and this equality is preserved by
reduction since the comatch is duplicated together with its name.

Where do the names for local comatches come from? We support user-annotated labels, which
allow the programmer to give meaningful names to comatches. Manually naming comatches in
this way is useful as these labels can also be used by defunctionalization to name the generated
constructors. We enforce that these user-annotated labels are globally unique. However, as we do
not want to burden the user with naming every single comatch in the program, we also allow
unannotated comatches, for which we automatically generate unique names. As a result, each
comatch occurring textually in the program has a unique name, but these names possibly become
duplicated during normalization and typechecking.

5This solution is similar to Binder et al.’s use of labels for local (co)pattern matches

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:12 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

4.1 Judgmental Equality of Comatches
Problem. For most dependently typed languages, the term 𝜆𝑥 .𝑥 is judgmentally equal to the term
𝜆𝑦 .𝑦, and likewise 𝜆𝑥 .2 + 2 and 𝜆𝑥 .4 are considered equal. Equating such terms becomes a prob-
lem, however, if we want to defunctionalize the programs which contain them. Different lambda
abstractions in a program are defunctionalized to different constructors, which are then no longer
judgmentally equal. Let us illustrate the problem with an example.

Consider the following proof that 𝜆𝑦 .𝑦 is the same function from natural numbers to natural
numbers as 𝜆𝑧 .𝑧. We prove this fact using a third lambda abstraction 𝜆𝑥 .𝑥 as an argument to the
reflexivity constructor.
codata Fun(a b: Type) { Fun(a, b).ap(a b: Type, x: a): b }
Refl(Fun(Nat, Nat), \x. x) : Eq(Fun(Nat, Nat), \y. y, \z. z)

If we defunctionalize this program, then each of these three lambda abstractions becomes one
constructor of the data type. However since different constructors are not judgmentally equal, the
following defunctionalized program no longer typechecks.
data Fun(a b: Type) { F1: Fun(Nat, Nat), F2: Fun(Nat, Nat), F3: Fun(Nat, Nat) }
def Fun(a, b).ap(a b: Type, x: a): b { F1 => x, F2 => x, F3 => x }
Refl(Fun(Nat, Nat), F1) : Eq(Fun(Nat, Nat), F2, F3)

Here is the gist of the problem: Judgmental equality must be preserved by defunctionalization and
refunctionalization. This means that if we don’t want to treat different constructors of a data type
as judgmentally equal, then we cannot treat all 𝛼-𝛽-equivalent comatches as judgmentally equal
either.

It is not impossible to devise a scheme which lifts judgmentally equal comatches to the same
constructors. However, we decided against this as it leads to confusing behavior. First, de- and
refunctionalization would no longer be inverse transformations at least under syntactic equality.
Second, such an attempt would necessarily be a conservative approximation as program equiv-
alence is undecidable in general. In practice, that would mean that some comatches would be
collapsed to the same constructor during lifting, while others would not.

Solution. Note that the opposite approach—never equating any comatches—doesn’t work either,
since typingwould then no longer be closed under substitution. For example, if 𝑓 is a variable stand-
ing for a function from natural numbers to natural numbers, then the term Refl(Fun(Nat,Nat), 𝑓)
is a proof of the proposition Eq(Fun(Nat,Nat), 𝑓 , 𝑓). But we could not substitute a comatch 𝜆𝑦 .𝑦
for 𝑓 , since the result would no longer typecheck. We therefore have to find a solution between
these two extremes.

Our solution consists of always considering local comatches together with a name5. Only co-
matches which have the same name are judgmentally equal, and this equality is preserved by
reduction since the comatch is duplicated together with its name.

Where do the names for local comatches come from? We support user-annotated labels, which
allow the programmer to give meaningful names to comatches. Manually naming comatches in
this way is useful as these labels can also be used by defunctionalization to name the generated
constructors. We enforce that these user-annotated labels are globally unique. However, as we do
not want to burden the user with naming every single comatch in the program, we also allow
unannotated comatches, for which we automatically generate unique names. As a result, each
comatch occurring textually in the program has a unique name, but these names possibly become
duplicated during normalization and typechecking.

5This solution is similar to Binder et al.’s use of labels for local (co)pattern matches

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Our solution: First program doesn't typecheck.

31

Deriving Dependently-Typed OOP from First Principles 129:13

4.2 Eta Equality
Problem. For reasons very similar to the previous section, 𝜂-equality is not preserved under de-
functionalization and refunctionalization. Let us again consider a simple example. In the following
proof, we show that a function 𝑓 is equal to its 𝜂-expanded form 𝜆𝑥 .𝑓 .ap(𝑥). In order to typecheck,
the proof would need to use a judgmental 𝜂-equality for functions.
codata Fun { ap(x: Nat): Nat }
let prop_eta(f: Fun): Eq(Fun, f, (\x. f.ap(x))) ⅟= Refl(Fun, f);

However, defunctionalization of this proof would result in the following program, where we have
used an ellipsis to mark all the constructors that were generated for the other lambda abstractions
in the program.
data Fun { Eta(f: Fun), … }
def Fun.ap(x: Nat): Nat { Eta(f) => f.ap(x),… }
let prop_eta(f: Fun): Eq(Fun, f, Eta(f)) ⅟= Refl(Fun, f);

Using prop_eta it would now be possible to show that any constructor f of Fun is equal to Eta(f).
This would contradict the provable proposition that distinct constructors are not equal.

Solution. We do not support 𝜂-equality in our formalization and implementation. This means
that we only normalize 𝛽-redexes but not 𝜂-redexes during typechecking. However, it would be
possible to support judgmental 𝜂-equality on a case-by-case basis similar to the eta-equality and
no-eta-equality keywords in Agda which enable or disable eta-equality for a specific record
type6. De- and refunctionalization is then only available for types without 𝜂-equality.

5 FORMALIZATION
In this section, we present the syntax, typing rules and operational semantics of our system. We
divide this presentation into three subsections: In Section 5.1, we introduce the core of our system.
We extend this core calculus by data types and pattern matching definitions in Section 5.2, and by
codata types and copattern matching definitions in Section 5.3.

We do not formalize local pattern and copattern matches. Instead, local pattern and copattern
matches are lifted to the top level before applying de- or refunctionalization, similar to the ap-
proach taken by Binder et al. [2019]. Some care must be taken to ensure that we close over all
required terms, as the types of terms which are part of the closure might close over additional
terms. For example, closing over v: Vec n requires us to also close over n. The main challenge for
local pattern and copattern matches revolves around judgmental equality, which we discussed in
Section 4.1.

5.1 Core System
In Figure 9 we define the syntax of our core system together with small examples in the rightmost
column.

Following standard convention, we formalize our system up to 𝛼-renaming of bound variables
x, y, z. We distinguish between contexts Γ, Δ and telescopes Ξ, Ψ. Contexts track the types of free
variables and must always be closed. Telescopes are dependent parameter lists whose types may
contain free variables bound in a context. If a telescope is closed, we may implicitly use it as a
context. A substitution 𝜌 , 𝜎 is an argument list to a telescope. A program Θ is a list of declarations
𝛿 , which are empty for now. There are five different kinds of expressions 𝑒 , 𝑠 , 𝑡 : Variables are de-
noted as described above. We denote the type universe as Type. Type constructors T𝜌 instantiate a
(co)data type with a substitution 𝜌 . Calling a producer C is written C𝜎 ; invoking a consumer d uses
the syntax 𝑒 .d𝜎 . The producer syntax denotes constructor calls for data types and codefinition calls

6Compare the section on record types in the Agda user manual: agda.readthedocs.io/en/v2.6.3/language/record-types.html.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Deriving Dependently-Typed OOP from First Principles 129:13

4.2 Eta Equality
Problem. For reasons very similar to the previous section, 𝜂-equality is not preserved under de-
functionalization and refunctionalization. Let us again consider a simple example. In the following
proof, we show that a function 𝑓 is equal to its 𝜂-expanded form 𝜆𝑥 .𝑓 .ap(𝑥). In order to typecheck,
the proof would need to use a judgmental 𝜂-equality for functions.
codata Fun { ap(x: Nat): Nat }
let prop_eta(f: Fun): Eq(Fun, f, (\x. f.ap(x))) ⅟= Refl(Fun, f);

However, defunctionalization of this proof would result in the following program, where we have
used an ellipsis to mark all the constructors that were generated for the other lambda abstractions
in the program.
data Fun { Eta(f: Fun), … }
def Fun.ap(x: Nat): Nat { Eta(f) => f.ap(x),… }
let prop_eta(f: Fun): Eq(Fun, f, Eta(f)) ⅟= Refl(Fun, f);

Using prop_eta it would now be possible to show that any constructor f of Fun is equal to Eta(f).
This would contradict the provable proposition that distinct constructors are not equal.

Solution. We do not support 𝜂-equality in our formalization and implementation. This means
that we only normalize 𝛽-redexes but not 𝜂-redexes during typechecking. However, it would be
possible to support judgmental 𝜂-equality on a case-by-case basis similar to the eta-equality and
no-eta-equality keywords in Agda which enable or disable eta-equality for a specific record
type6. De- and refunctionalization is then only available for types without 𝜂-equality.

5 FORMALIZATION
In this section, we present the syntax, typing rules and operational semantics of our system. We
divide this presentation into three subsections: In Section 5.1, we introduce the core of our system.
We extend this core calculus by data types and pattern matching definitions in Section 5.2, and by
codata types and copattern matching definitions in Section 5.3.

We do not formalize local pattern and copattern matches. Instead, local pattern and copattern
matches are lifted to the top level before applying de- or refunctionalization, similar to the ap-
proach taken by Binder et al. [2019]. Some care must be taken to ensure that we close over all
required terms, as the types of terms which are part of the closure might close over additional
terms. For example, closing over v: Vec n requires us to also close over n. The main challenge for
local pattern and copattern matches revolves around judgmental equality, which we discussed in
Section 4.1.

5.1 Core System
In Figure 9 we define the syntax of our core system together with small examples in the rightmost
column.

Following standard convention, we formalize our system up to 𝛼-renaming of bound variables
x, y, z. We distinguish between contexts Γ, Δ and telescopes Ξ, Ψ. Contexts track the types of free
variables and must always be closed. Telescopes are dependent parameter lists whose types may
contain free variables bound in a context. If a telescope is closed, we may implicitly use it as a
context. A substitution 𝜌 , 𝜎 is an argument list to a telescope. A program Θ is a list of declarations
𝛿 , which are empty for now. There are five different kinds of expressions 𝑒 , 𝑠 , 𝑡 : Variables are de-
noted as described above. We denote the type universe as Type. Type constructors T𝜌 instantiate a
(co)data type with a substitution 𝜌 . Calling a producer C is written C𝜎 ; invoking a consumer d uses
the syntax 𝑒 .d𝜎 . The producer syntax denotes constructor calls for data types and codefinition calls

6Compare the section on record types in the Agda user manual: agda.readthedocs.io/en/v2.6.3/language/record-types.html.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Judgemental Equality must be Preserved (II)

Our solution: Eta is not valid during equality checking.

Three reasons why our system is inconsistent

• We use the Type : Type axiom instead of a universe hierarchy

• We do not check that recursive occurrences in data and codata declarations
are strictly positive

• We do not check for termination or productivity

32

Difficult to preserve these properties under de-/refunctionalization
Problems appear already in the simply-typed version

33

129:20 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

7.2 Universe Hierarchy
Another reason why our system is inconsistent is that we use one impredicative universe with
the Type-in-Type axiom. This axiom is known to make the theory inconsistent [Hurkens 1995];
on the other hand, it vastly simplifies the presentation and implementation of the theory if we
don’t have to care about universe levels. We want to investigate how de- and refunctionalization
interact with the assignment of type universes to types. This was also identified as a problem by
Huang and Yallop [2023].

7.3 The Variance Problem
Most proof assistants enforce strict positivity in the definition of data types. The strict positivity
restriction says that recursive occurrences of the type that is defined are only allowed at strictly
positive positions, and is required to avoid Curry’s paradox.

The only source of contravariance in most systems is the function type, where arguments are
contravariant. In a system with user-defined codata types many different types are the source of
contravariance, but this is quite simple to specify. The problem is that many useful types from
object-oriented programming require both positive and negative occurrences of the type being
defined. For example, consider the following type7:
codata NatSet { member(x: Nat): Bool, union(x: NatSet): NatSet }

In this example, the NatSet type occurs both positively and negatively in the union destructor.
But this definition is a sensible one; it is not an obscure definition at all. So if we want to enable
the user to work with such definitions we have to replace the strict positivity check by something
more refined. One avenue that we want to explore is guarded type theory (e.g. [Clouston et al.
2017]). Guarded logic was introduced by [Nakano 2000] precisely in order to fix problems with
binary methods in object-oriented programming, and was later developed by other authors into
guarded type theories.

7.4 Strong Behavioural Equality
There is no universally satisfactory definition of equality as the appropriate definition depends on
the object being modeled. For many data types, syntactic equality is sensible. For instance, two
natural numbers 𝑛0,𝑛1 : N are considered judgmentally equal if they are built from the same
constructors, i.e. Z ≡ Z and 𝑛0 ≡ 𝑛1 =⇒ S(𝑛0) ≡ S(𝑛1). However, the situation is very different as
soon as we consider functions 𝑓 ,𝑔 : N→ N. Syntactic equality of the function definitions does not
seem appropriate, because multiple definitions can define the same function. A more reasonable
approach is to regard two functions as equal if they behave identically on all inputs. This principle
is known as functional extensionality:

fun_ext : ∀𝑓 𝑔, (∀𝑥, Eq(N→ N, 𝑓 𝑥,𝑔 𝑥)) =⇒ Eq(N→ N, 𝑓 ,𝑔)

Functional extensionality is the prototypical example of behavioral equality. It is a special case
of bisimilarity: We consider any two objects equal if they behave identically with regard to their
observations. For codata types, we often desire behavioral equalities such as bisimilarity.

In most proof assistants, one can pose those propositional behavioral equalities as axioms. But
this approach does not work in our system. This is because the functional extensionality axiom
is inconsistent for the data representation Fun of functions N → N, which can be seen in the
following example:

7This example was pointed out in the answer by Neel Krishnaswami to the following question on the proof assistants stack
exchange: https://proofassistants.stackexchange.com/questions/372/bringing-oop-features-into-proof-assistants.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Sometimes it is good to be negative!

Original motivation for Nakano's guarded logic / guarded type theory.
Well-known problem in theoretical OOP literature.

Conclusion

34

What we have achieved in the paper

• Dependent type theory with no builtin types: 
Non-dependent and dependent function types are user-defined codata types

• Proof of type soundness (Extended version @ ArXiV)

• De-/Refunctionalization is total and type-preserving

• We can de-/refunctionalize types that occur in indizes of type constructors
and which are normalized and compared during type checking

• Various examples: Strong vs. weak Σ-types, codata encodings of natural
numbers, dependently-typed programming examples

35

What we have *not* achieved in the paper

• System is sound, but not consistent

• We use the Type : Type axiom

• We don't check for (strict) positivity of recursive (co-)data declarations

• We don't check for termination or productivity

• Eta-equalities not valid for typechecking

• Some restrictions on judgemental equality

36

• polarity-lang.github.io/oopsla24/

• Implemented in Rust

• LSP Server and VSCode
Extension

• All examples run in the browser!

• Actively hacked on :)

Implementation

37

http://polarity-lang.github.io/oopsla24

Please like & subscribe:
polarity-lang.github.io

38

