
David Binder, Thomas Piecha, Colloquium Logicum 2022, Konstanz

Administrative Normal Forms
and Focusing for Lambda Calculi

1

A bird's-eye view
Some context in lieu of motivation

• Compilation of functional programming languages and proof assistants based
on type theory.

• Efficient implementation of logic on a computer.

• Use of abstract machines as an intermediary between substitution based
evaluation (e.g beta-reduction) and low-level machines (e.g. x86-Assembly).

2

A Tale of Two Calculi
Natural Deduction and Sequent Calculus

• Natural deduction (ND) and Sequent Calculus (SC) developed in the same paper
by G. Gentzen (1935).

• Curry and Howard discover the relation between combinatory logic and Hilbert
calculus, lambda calculus and ND, but no similar system for classical SC is found.

• Griffin (1989) discovers that the type of control operator call/cc is Peirce's law.

• Development of -calculus by Parigot (1992), and -calculus by Curien and
Herbelin (2000).

• Since then: Lot of work on -calculus; Ariola, Downen, Munch-Maccagnoni,
Zeilberger, Wadler...

λμ λμμ̃

λμμ̃

3

4

Sequent Calculus as a Compiler Intermediate Language

Paul Downen Luke Maurer
Zena M. Ariola

University of Oregon, USA
{pdownen,maurerl,ariola}@cs.uoregon.edu

Simon Peyton Jones
Microsoft Research Cambridge, UK

simonpj@microsoft.com

Abstract
The �-calculus is popular as an intermediate language for practical
compilers. But in the world of logic it has a lesser-known twin,
born at the same time, called the sequent calculus. Perhaps that
would make for a good intermediate language, too? To explore
this question we designed Sequent Core, a practically-oriented core
calculus based on the sequent calculus, and used it to re-implement
a substantial chunk of the Glasgow Haskell Compiler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Intermediate representations; Natural deduction; Se-
quent calculus; Compiler optimizations; Continuations; Haskell

1. Introduction
Steele and Sussman’s “Lambda the ultimate” papers [41, 42] per-
suasively argued that the �-calculus is far more than a theoretical
model of computation: it is an incredibly expressive and practical
intermediate language for a compiler. The Rabbit compiler [40],
its successors (e.g. Orbit [21]), and Appel’s book “Compiling with
continuations” [1] all demonstrate the power and utility of the �-
calculus as a compiler’s intermediate language.

The typed �-calculus arises canonically as the term language
for a logic called natural deduction [14], using the Curry-Howard
isomorphism [45]: the pervasive connection between logic and
programming languages asserting that propositions are types and
proofs are programs. Indeed, for many people, the �-calculus is the
living embodiment of Curry-Howard.

But natural deduction is not the only logic! Conspicuously,
natural deduction has a twin, born in the very same paper [14], called
the sequent calculus. Thanks to the Curry-Howard isomorphism,
terms of the sequent calculus can also be seen as a programming
language [9, 15, 44] with an emphasis on control flow.

This raises an obvious question: does the language of the sequent
calculus have merit as a practical compiler intermediate language,
in the same way that the �-calculus does? What advantages and
disadvantages might it have, compared to the existing �-based
technology? Curiously, we seem to be the first to address these

questions, and surprisingly the task was not as routine as we had
expected. Specifically, our contributions are these:

• We describe a typed sequent calculus called Sequent Core with
the same expressiveness as System F!, including let, algebraic
data types, and case (Section 2).
The broad outline of the language is determined by the logic,
but we made numerous choices driven by its role as a compiler
intermediate representation (Section 2.2).

• Our language comes equipped with an operational semantics
(Section 2.3), a type system (Section 2.4), and standard meta-
theoretical properties. We also give direct-style translations to
and from System F! (Section 3).1

• The proof of the pudding is in the eating. We have implemented
our intermediate language as a plugin2 for GHC, a state-of-
the-art optimizing compiler for Haskell (Section 4). GHC’s
intermediate language, called Core, is essentially System F!;
our new plugin translates Core programs into Sequent Core,
optimizes them, and translates them back. Moreover, we have re-
implemented some of GHC’s Core-to-Core optimization passes,
notably the simplifier, to instead use Sequent Core.

• From the implementation, we found a way that Sequent Core
was qualitatively better than Core for optimization: the treatment
of join points. Specifically, join points in Sequent Core are
preserved during simplifications such as the ubiquitous case-
of-case transformation (Sections 4.2 and 4.3). Further, we show
how to recover the join points of Sequent Core programs, after
they are lost in translation, using a lightweight version of a
process known as contification [20] (Section 5).

So what kind of intermediate language do we get out of the sequent
calculus? It turns out that the language resembles continuation-
passing style, a common technique in the �-calculus for representing
control flow inside a program. The division between assumptions
and conclusions in the logic gives us a divide between programs
that yield results and continuations that observe those results in
the language. Yet despite the surface similarity, Sequent Core is
still quite different from continuation-passing style (Section 6).
Perhaps most importantly, Sequent Core brings control flow and
continuations to a compiler like GHC without stepping on its toes,
allowing its extensive direct-style optimizations to still shine through.
In the end, we get an intermediate language that lies somewhere in
between direct and continuation-passing styles (Section 7), sharing
some advantages of both.

In a sense, many of the basic ideas we present here have been
re-discovered over the years as the tradition of Curry-Howard

1 More details of the meta-theory can be found in the appendix: http:
//ix.cs.uoregon.edu/~pdownen/publications/scfp_ext.pdf
2 Available at: http://github.com/lukemaurer/sequent-core

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’16, September 18–24, 2016, Nara, Japan
ACM. 978-1-4503-4219-3/16/09...
http://dx.doi.org/10.1145/2951913.2951931

74

Relating ND and SC
Two sides of the same coin

• Two communities: Logicians/proof theorists and PLT people.

• Focusing was introduced by Andreoli (1992) for proof search in linear logic.

• The A-normal form was introduced by Sabry and Felleisen (1992) as an
optimization of CPS based compilers.

• We show how to relate the two.

5

Example

6

Example (ND)

7

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Example (ND)

8

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Tupling!

Example (ND)

9

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Projections!

Example (ND)

10

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Numbers!

Example (ND)

11

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Should evaluate in one step to (CBV!)π2(1,3)

Example (ND)

12

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Redex

Evaluation context

Very inefficient! We want to get rid of search for next redex.

Example (ND)

13

The example program then evaluates in the following way:111

〈µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 | Top〉 (1)
$ 〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 Top〉 (2)
$ 〈µβ.〈(1, 4) | π1 β〉 | µ̃x.〈(x, 3) | π2 Top〉〉 (3)
$ 〈(1, 4) | π1(µ̃x.〈(x, 3) | π2 Top〉)〉 (4)
$ 〈1 | µ̃x.〈(x, 3) | π2 Top〉〉 (5)
$ 〈(1, 3) | π2 Top〉 (6)
$ 〈3 | Top〉 (7)

Note that in step (5) we project from (1, 4) to 1 without being in an evaluation112

context. The evaluation within an evaluation context is instead simulated by113

steps (4) and (6). That is, steps (4) to (6) correspond to the single evaluation114

step115

π2(π1(1, 4), 3) $ π2(1, 3).

This sort of evaluation within a context, which is present in both the λ-116

calculus and the λµµ̃-calculus, poses no problem from a theoretical point of117

view. However, from a practical point of view, it is very inefficient to apply this118

kind of operational semantics since the search for a redex requires in general119

to traverse deeply into a term. Moreover, evaluations of this kind render the120

implementation of various compiler optimizations (cf. [15, 9]) more difficult.121

These difficulties can be avoided by using certain normal forms, for example,122

the so-called administrative normal form (A-normal form or ANF)1 for the123

λ-calculus, and the focused normal form for the λµµ̃-calculus.124

The ANF of the first example program125

π2(π1(1, 4), 3)

is126

let x = π1(1, 4) in (let y = π2(x, 3) in y), (A)
whereas the focused normal form of the second program127

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉

is128

µα.〈µβ.〈(1, 4) | π1 β〉 | µ̃x.〈(x, 3) | π2 α〉〉. (F)
Comparing the ANF (A) with the focused normal form (F) makes the structural129

similarity between the two normal forms apparent: in both cases the subcompu-130

tation π1(1, 4) (resp. 〈(1, 4) | π1β〉) was lifted out and then bound to the variable131

x in the subsequent computation π2(x, 3) (resp. 〈(x, 3) | π2 α〉). The difference132

between (A) and (F) consists in the use of let-constructs in the λ-calculus on133

the one hand and the use of µ- and µ̃-constructs in the λµµ̃-calculus on the134

other hand.135

1While the “A” in “A-normal” originally had no special meaning, it was later given the
meaning of “administrative normal form”, due to the administrative redexes it introduces.

4

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

Compile to A-normal form:

Enter the sequent calculus

14

Example (SC)
The same example in sequent calculus

15

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

ND:

SC:

Example (SC)
The same example in sequent calculus

16

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

ND:

SC:

Example (SC)
The same example in sequent calculus

17

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

ND:

SC:

vv

Example (SC)
The same example in sequent calculus

18

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

ND:

SC:

Example (SC)
The same example in sequent calculus

19

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

2 An informal example67

We explain the main idea with an informal example. Consider the following68

program69

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣) and pro-70

jections π1 ␣ and π2 ␣ on the first and second element of a pair, respectively.71

We expect this program to evaluate to the natural number 3. Using call-by-72

name we could immediately evaluate this program to its final value 3. However,73

using call-by-value we first have to evaluate the argument of π2 to the value74

(1, 3) by evaluating π1(1, 4) to 1.75

There are different ways to formalize the evaluation of a term within a con-76

text. Here we choose the method of evaluation contexts (cf. Felleisen and Hieb77

[7] and Section 5.1 below). An evaluation context E[−] is a term with a place-78

holder !, which is to be filled with the outermost redex to be evaluated next.79

We will use the symbol " throughout to express syntactic equality up to α-80

equivalence (i.e., up to the renaming of bound variables).81

In our example, this allows us to evaluate the outermost redex π1(1, 4) within82

the context E[−] " π2(!, 3) as follows:83

If π1(1, 4) # 1, then π2(π1(1, 4), 3) " E[π1(1, 4)] # E[1] " π2(1, 3).84

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3) into the85

λµµ̃-calculus (cf. Section 3.3) results in the program86

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉.

We can recognize many familiar constructs from the initial program. We still87

have natural numbers 1, 4 and 3, the pair constructor (␣, ␣) and projections π188

and π2, but they are now organized and nested in a very different way with the89

help of two new constructs.90

The first new construct is the cut 〈␣ | ␣〉 which is used to oppose a proof91

(or proof term) of a proposition with its refutation (or refutation term). In92

our example, we use the cut to oppose a proof (1, 4) of the type N ∧ N with a93

refutation π1 β of the same type, where we assume that the refutation variable94

β stands for some unknown refutation of type N. The reduction rules of the95

λµµ̃-calculus always replace a cut by another cut, and in the case of pairs the96

reduction rule allows to replace 〈(1, 4) | π1 β〉 by the new cut 〈1 | β〉.97

The second new construct is the µ-abstraction µα.␣. We have more to say98

about this construct in Section 3.3, but for now it suffices to say that we use99

µα.〈␣ | ␣〉 to introduce a subcomputation (represented by the cut 〈␣ | ␣〉) return-100

ing to the output named by the variable α. For example, in order to represent101

the subcomputation 2 + 2, we use the term µα.〈2 + 2 | α〉, which evaluates to102

µα.〈4 | α〉.103

We cannot evaluate the program µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 directly104

to its final value, since one can only evaluate cuts 〈␣ | ␣〉, whereas this program105

has the form of a µ-abstraction. This can be resolved by introducing a third106

construct, namely the toplevel output Top, which enables us to embed any µ-107

program in a cut whose second element is Top. Furthermore, a µ̃-abstraction108

µ̃x.〈␣ | ␣〉 has to be used, which binds a value to the variable x in the subcom-109

putation 〈␣ | ␣〉.110

3

ND:

SC:

Example (SC)
The focused normal form

20

The example program then evaluates in the following way:111

〈µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 | Top〉 (1)
$ 〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 Top〉 (2)
$ 〈µβ.〈(1, 4) | π1 β〉 | µ̃x.〈(x, 3) | π2 Top〉〉 (3)
$ 〈(1, 4) | π1(µ̃x.〈(x, 3) | π2 Top〉)〉 (4)
$ 〈1 | µ̃x.〈(x, 3) | π2 Top〉〉 (5)
$ 〈(1, 3) | π2 Top〉 (6)
$ 〈3 | Top〉 (7)

Note that in step (5) we project from (1, 4) to 1 without being in an evaluation112

context. The evaluation within an evaluation context is instead simulated by113

steps (4) and (6). That is, steps (4) to (6) correspond to the single evaluation114

step115

π2(π1(1, 4), 3) $ π2(1, 3).

This sort of evaluation within a context, which is present in both the λ-116

calculus and the λµµ̃-calculus, poses no problem from a theoretical point of117

view. However, from a practical point of view, it is very inefficient to apply this118

kind of operational semantics since the search for a redex requires in general119

to traverse deeply into a term. Moreover, evaluations of this kind render the120

implementation of various compiler optimizations (cf. [15, 9]) more difficult.121

These difficulties can be avoided by using certain normal forms, for example,122

the so-called administrative normal form (A-normal form or ANF)1 for the123

λ-calculus, and the focused normal form for the λµµ̃-calculus.124

The ANF of the first example program125

π2(π1(1, 4), 3)

is126

let x = π1(1, 4) in (let y = π2(x, 3) in y), (A)
whereas the focused normal form of the second program127

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉

is128

µα.〈µβ.〈(1, 4) | π1 β〉 | µ̃x.〈(x, 3) | π2 α〉〉. (F)
Comparing the ANF (A) with the focused normal form (F) makes the structural129

similarity between the two normal forms apparent: in both cases the subcompu-130

tation π1(1, 4) (resp. 〈(1, 4) | π1β〉) was lifted out and then bound to the variable131

x in the subsequent computation π2(x, 3) (resp. 〈(x, 3) | π2 α〉). The difference132

between (A) and (F) consists in the use of let-constructs in the λ-calculus on133

the one hand and the use of µ- and µ̃-constructs in the λµµ̃-calculus on the134

other hand.135

1While the “A” in “A-normal” originally had no special meaning, it was later given the
meaning of “administrative normal form”, due to the administrative redexes it introduces.

4

The example program then evaluates in the following way:111

〈µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉 | Top〉 (1)
$ 〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 Top〉 (2)
$ 〈µβ.〈(1, 4) | π1 β〉 | µ̃x.〈(x, 3) | π2 Top〉〉 (3)
$ 〈(1, 4) | π1(µ̃x.〈(x, 3) | π2 Top〉)〉 (4)
$ 〈1 | µ̃x.〈(x, 3) | π2 Top〉〉 (5)
$ 〈(1, 3) | π2 Top〉 (6)
$ 〈3 | Top〉 (7)

Note that in step (5) we project from (1, 4) to 1 without being in an evaluation112

context. The evaluation within an evaluation context is instead simulated by113

steps (4) and (6). That is, steps (4) to (6) correspond to the single evaluation114

step115

π2(π1(1, 4), 3) $ π2(1, 3).

This sort of evaluation within a context, which is present in both the λ-116

calculus and the λµµ̃-calculus, poses no problem from a theoretical point of117

view. However, from a practical point of view, it is very inefficient to apply this118

kind of operational semantics since the search for a redex requires in general119

to traverse deeply into a term. Moreover, evaluations of this kind render the120

implementation of various compiler optimizations (cf. [15, 9]) more difficult.121

These difficulties can be avoided by using certain normal forms, for example,122

the so-called administrative normal form (A-normal form or ANF)1 for the123

λ-calculus, and the focused normal form for the λµµ̃-calculus.124

The ANF of the first example program125

π2(π1(1, 4), 3)

is126

let x = π1(1, 4) in (let y = π2(x, 3) in y), (A)
whereas the focused normal form of the second program127

µα.〈(µβ.〈(1, 4) | π1 β〉, 3) | π2 α〉

is128

µα.〈µβ.〈(1, 4) | π1 β〉 | µ̃x.〈(x, 3) | π2 α〉〉. (F)
Comparing the ANF (A) with the focused normal form (F) makes the structural129

similarity between the two normal forms apparent: in both cases the subcompu-130

tation π1(1, 4) (resp. 〈(1, 4) | π1β〉) was lifted out and then bound to the variable131

x in the subsequent computation π2(x, 3) (resp. 〈(x, 3) | π2 α〉). The difference132

between (A) and (F) consists in the use of let-constructs in the λ-calculus on133

the one hand and the use of µ- and µ̃-constructs in the λµµ̃-calculus on the134

other hand.135

1While the “A” in “A-normal” originally had no special meaning, it was later given the
meaning of “administrative normal form”, due to the administrative redexes it introduces.

4

Overview

21

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

The Lambda Calculus

22

Lambda Calculus
Overview

23

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

Lambda Calculus
Types

24

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Lambda Calculus
Terms

25

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Lambda Calculus
Terms

26

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Lambda Calculus
Terms

27

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Lambda Calculus
Terms

28

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Lambda Calculus
Typing rules

29

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

The Sequent Calculus

30

Sequent Calculus
Overview

31

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

Sequent Calculus
Terms

32

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

Judgement forms

33

The usual interpretation of a valid classical sequent Γ ! ∆ can be expressed165

as “If all the formulas in Γ are true, then at least one of the formulas in ∆ is true.”166

This interpretation has to be refined in order to understand the correspondence167

between the λµµ̃-calculus and the classical sequent calculus. The refinement168

consists in distinguishing three variants of the sequent Γ ! ∆:169

1. Γ ! [ϕ],∆170

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is true.”171

2. Γ, [ϕ] ! ∆172

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is false.”173

3. Γ ! ∆174

“The assumption that all γ ∈ Γ are true and all δ ∈ ∆ are false is contra-175

dictory.”176

The formula in square brackets [ϕ] is called the active formula of the sequent.177

There can be at most one active formula in any sequent.178

The λµµ̃-calculus has one syntactic category and one judgement form for179

each of these three interpretations:180

1. The active formula ϕ in the succedent of a sequent Γ ! [ϕ],∆ is assigned181

to a term e, and the corresponding judgement form is182

Γ ! e : ϕ | ∆.

Here the symbol | singles out a formula ϕ for which the proof e is currently183

constructed (cf. [4]).184

2. The active formula ϕ in the antecedent of a sequent Γ, [ϕ] ! ∆ is assigned185

to a coterm s, and the corresponding judgement form is186

Γ | s : ϕ ! ∆.

In this case, the symbol | singles out a formula ϕ for which the refutation187

s is currently constructed.188

3. A sequent Γ ! ∆ with no active formula is interpreted by a command c,189

and the corresponding judgement form is190

c : (Γ ! ∆).

This judgement form can be read as follows: “If all γ ∈ Γ are true and all191

δ ∈ ∆ are false, then c is a contradiction and a well-typed command.”192

3.3 The λµµ̃-calculus193

We now consider the syntax of the λµµ̃-calculus. We have to partition the set194

of λ-terms into the three syntactic categories of the λµµ̃-calculus, namely terms,195

coterms and commands. The basic idea is that the introduction forms λx.e and196

(e, e) (which correspond to the introduction rules in natural deduction) will re-197

main terms of the λµµ̃-calculus. On the other hand, the elimination forms πie198

and e e (which correspond to the elimination rules in natural deduction) will199

6

Judgement forms

34

The usual interpretation of a valid classical sequent Γ ! ∆ can be expressed165

as “If all the formulas in Γ are true, then at least one of the formulas in ∆ is true.”166

This interpretation has to be refined in order to understand the correspondence167

between the λµµ̃-calculus and the classical sequent calculus. The refinement168

consists in distinguishing three variants of the sequent Γ ! ∆:169

1. Γ ! [ϕ],∆170

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is true.”171

2. Γ, [ϕ] ! ∆172

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is false.”173

3. Γ ! ∆174

“The assumption that all γ ∈ Γ are true and all δ ∈ ∆ are false is contra-175

dictory.”176

The formula in square brackets [ϕ] is called the active formula of the sequent.177

There can be at most one active formula in any sequent.178

The λµµ̃-calculus has one syntactic category and one judgement form for179

each of these three interpretations:180

1. The active formula ϕ in the succedent of a sequent Γ ! [ϕ],∆ is assigned181

to a term e, and the corresponding judgement form is182

Γ ! e : ϕ | ∆.

Here the symbol | singles out a formula ϕ for which the proof e is currently183

constructed (cf. [4]).184

2. The active formula ϕ in the antecedent of a sequent Γ, [ϕ] ! ∆ is assigned185

to a coterm s, and the corresponding judgement form is186

Γ | s : ϕ ! ∆.

In this case, the symbol | singles out a formula ϕ for which the refutation187

s is currently constructed.188

3. A sequent Γ ! ∆ with no active formula is interpreted by a command c,189

and the corresponding judgement form is190

c : (Γ ! ∆).

This judgement form can be read as follows: “If all γ ∈ Γ are true and all191

δ ∈ ∆ are false, then c is a contradiction and a well-typed command.”192

3.3 The λµµ̃-calculus193

We now consider the syntax of the λµµ̃-calculus. We have to partition the set194

of λ-terms into the three syntactic categories of the λµµ̃-calculus, namely terms,195

coterms and commands. The basic idea is that the introduction forms λx.e and196

(e, e) (which correspond to the introduction rules in natural deduction) will re-197

main terms of the λµµ̃-calculus. On the other hand, the elimination forms πie198

and e e (which correspond to the elimination rules in natural deduction) will199

6

Judgement forms

35

The usual interpretation of a valid classical sequent Γ ! ∆ can be expressed165

as “If all the formulas in Γ are true, then at least one of the formulas in ∆ is true.”166

This interpretation has to be refined in order to understand the correspondence167

between the λµµ̃-calculus and the classical sequent calculus. The refinement168

consists in distinguishing three variants of the sequent Γ ! ∆:169

1. Γ ! [ϕ],∆170

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is true.”171

2. Γ, [ϕ] ! ∆172

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is false.”173

3. Γ ! ∆174

“The assumption that all γ ∈ Γ are true and all δ ∈ ∆ are false is contra-175

dictory.”176

The formula in square brackets [ϕ] is called the active formula of the sequent.177

There can be at most one active formula in any sequent.178

The λµµ̃-calculus has one syntactic category and one judgement form for179

each of these three interpretations:180

1. The active formula ϕ in the succedent of a sequent Γ ! [ϕ],∆ is assigned181

to a term e, and the corresponding judgement form is182

Γ ! e : ϕ | ∆.

Here the symbol | singles out a formula ϕ for which the proof e is currently183

constructed (cf. [4]).184

2. The active formula ϕ in the antecedent of a sequent Γ, [ϕ] ! ∆ is assigned185

to a coterm s, and the corresponding judgement form is186

Γ | s : ϕ ! ∆.

In this case, the symbol | singles out a formula ϕ for which the refutation187

s is currently constructed.188

3. A sequent Γ ! ∆ with no active formula is interpreted by a command c,189

and the corresponding judgement form is190

c : (Γ ! ∆).

This judgement form can be read as follows: “If all γ ∈ Γ are true and all191

δ ∈ ∆ are false, then c is a contradiction and a well-typed command.”192

3.3 The λµµ̃-calculus193

We now consider the syntax of the λµµ̃-calculus. We have to partition the set194

of λ-terms into the three syntactic categories of the λµµ̃-calculus, namely terms,195

coterms and commands. The basic idea is that the introduction forms λx.e and196

(e, e) (which correspond to the introduction rules in natural deduction) will re-197

main terms of the λµµ̃-calculus. On the other hand, the elimination forms πie198

and e e (which correspond to the elimination rules in natural deduction) will199

6

Judgement forms

36

The usual interpretation of a valid classical sequent Γ ! ∆ can be expressed165

as “If all the formulas in Γ are true, then at least one of the formulas in ∆ is true.”166

This interpretation has to be refined in order to understand the correspondence167

between the λµµ̃-calculus and the classical sequent calculus. The refinement168

consists in distinguishing three variants of the sequent Γ ! ∆:169

1. Γ ! [ϕ],∆170

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is true.”171

2. Γ, [ϕ] ! ∆172

“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then ϕ is false.”173

3. Γ ! ∆174

“The assumption that all γ ∈ Γ are true and all δ ∈ ∆ are false is contra-175

dictory.”176

The formula in square brackets [ϕ] is called the active formula of the sequent.177

There can be at most one active formula in any sequent.178

The λµµ̃-calculus has one syntactic category and one judgement form for179

each of these three interpretations:180

1. The active formula ϕ in the succedent of a sequent Γ ! [ϕ],∆ is assigned181

to a term e, and the corresponding judgement form is182

Γ ! e : ϕ | ∆.

Here the symbol | singles out a formula ϕ for which the proof e is currently183

constructed (cf. [4]).184

2. The active formula ϕ in the antecedent of a sequent Γ, [ϕ] ! ∆ is assigned185

to a coterm s, and the corresponding judgement form is186

Γ | s : ϕ ! ∆.

In this case, the symbol | singles out a formula ϕ for which the refutation187

s is currently constructed.188

3. A sequent Γ ! ∆ with no active formula is interpreted by a command c,189

and the corresponding judgement form is190

c : (Γ ! ∆).

This judgement form can be read as follows: “If all γ ∈ Γ are true and all191

δ ∈ ∆ are false, then c is a contradiction and a well-typed command.”192

3.3 The λµµ̃-calculus193

We now consider the syntax of the λµµ̃-calculus. We have to partition the set194

of λ-terms into the three syntactic categories of the λµµ̃-calculus, namely terms,195

coterms and commands. The basic idea is that the introduction forms λx.e and196

(e, e) (which correspond to the introduction rules in natural deduction) will re-197

main terms of the λµµ̃-calculus. On the other hand, the elimination forms πie198

and e e (which correspond to the elimination rules in natural deduction) will199

6

Sequent Calculus
Terms

37

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Sequent Calculus
Terms

38

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Sequent Calculus
Terms

39

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Sequent Calculus
Terms

40

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Sequent Calculus
Typing rules

41

1. term typing: Γ ! t : τ | ∆,235

2. coterm typing: Γ | s : τ ! ∆, and236

3. command typing: c : (Γ ! ∆)237

are the following:238

Term typing Coterm typing

Varx
Γ, x : τ ! x : τ | ∆

Varα
Γ | α : τ ! α : τ,∆

Γ, x : σ ! t : τ | ∆
Abs

Γ ! λx.t : σ → τ | ∆
Γ ! t : τ | ∆ Γ | s : σ ! ∆

App
Γ | t · s : τ → σ ! ∆

Γ ! t1 : τ1 | ∆ Γ ! t2 : τ2 | ∆
Pair

Γ ! (t1, t2) : τ1 ∧ τ2 | ∆
Γ | s : τi ! ∆

Proj
Γ | π1 s : τ1 ∧ τ2 ! ∆

c : (Γ ! α : τ,∆)
Mu

Γ ! µα.c : τ | ∆
c : (Γ, x : τ ! ∆)

Mu∼
Γ | µ̃x.c ! ∆

Command typing

Γ ! t : τ | ∆ Γ | s : τ ! ∆
Cut〈t | s〉 : (Γ ! ∆)

4 Translating λ-terms to λµµ̃-terms239

We introduce a compositional translation from λ-terms to λµµ̃-terms and show240

that this translation preserves typeability.241

Definition 4.1. The translation !−" : Λ → Λµµ̃ is defined as follows:242

!x" :! x (T1)
!λx.e" :! λx.!e" (T2)

!(e1, e2)" :! (!e1", !e2") (T3)
!e1 e2" :! µα.〈!e1" | !e2" · α〉 (T4)
!πi e" :! µα.〈!e" | πi α〉 (T5)

!let x = e1 in e2" :! µα.〈!e1" | µ̃x.〈!e2" | α〉〉. (T6)

In the last three clauses, the coterm variable α has to be fresh.243

Let e be any expression of the λ-calculus typeable with type τ in a context Γ.244

Then the translation !e" is a term of the λµµ̃-calculus which is typeable with245

the same type τ (in the same context Γ of term variables and with an empty246

context of coterm variables).247

Theorem 4.2. For all e, τ and Γ: if Γ ! e : τ , then Γ ! !e" : τ |∅.248

Proof. The proof is by induction on the derivation of Γ ! e : τ in the λ-calculus.249

The cases for variables, tuples and λ-abstractions are trivial; we will only discuss250

the following interesting cases.251

8

Translating from ND to SC

42

Sequent Calculus
Overview

43

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

Translation

44

1. term typing: Γ ! t : τ | ∆,235

2. coterm typing: Γ | s : τ ! ∆, and236

3. command typing: c : (Γ ! ∆)237

are the following:238

Term typing Coterm typing

Varx
Γ, x : τ ! x : τ | ∆

Varα
Γ | α : τ ! α : τ,∆

Γ, x : σ ! t : τ | ∆
Abs

Γ ! λx.t : σ → τ | ∆
Γ ! t : τ | ∆ Γ | s : σ ! ∆

App
Γ | t · s : τ → σ ! ∆

Γ ! t1 : τ1 | ∆ Γ ! t2 : τ2 | ∆
Pair

Γ ! (t1, t2) : τ1 ∧ τ2 | ∆
Γ | s : τi ! ∆

Proj
Γ | π1 s : τ1 ∧ τ2 ! ∆

c : (Γ ! α : τ,∆)
Mu

Γ ! µα.c : τ | ∆
c : (Γ, x : τ ! ∆)

Mu∼
Γ | µ̃x.c ! ∆

Command typing

Γ ! t : τ | ∆ Γ | s : τ ! ∆
Cut〈t | s〉 : (Γ ! ∆)

4 Translating λ-terms to λµµ̃-terms239

We introduce a compositional translation from λ-terms to λµµ̃-terms and show240

that this translation preserves typeability.241

Definition 4.1. The translation !−" : Λ → Λµµ̃ is defined as follows:242

!x" :! x (T1)
!λx.e" :! λx.!e" (T2)

!(e1, e2)" :! (!e1", !e2") (T3)
!e1 e2" :! µα.〈!e1" | !e2" · α〉 (T4)
!πi e" :! µα.〈!e" | πi α〉 (T5)

!let x = e1 in e2" :! µα.〈!e1" | µ̃x.〈!e2" | α〉〉. (T6)

In the last three clauses, the coterm variable α has to be fresh.243

Let e be any expression of the λ-calculus typeable with type τ in a context Γ.244

Then the translation !e" is a term of the λµµ̃-calculus which is typeable with245

the same type τ (in the same context Γ of term variables and with an empty246

context of coterm variables).247

Theorem 4.2. For all e, τ and Γ: if Γ ! e : τ , then Γ ! !e" : τ |∅.248

Proof. The proof is by induction on the derivation of Γ ! e : τ in the λ-calculus.249

The cases for variables, tuples and λ-abstractions are trivial; we will only discuss250

the following interesting cases.251

8

The Q Normal Form for ND

45

Sequent Calculus
Overview

46

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

The Q-normal form for ND

47

1. Values: v ::= λx.e | (v, v) | x.343

2. Computations: c ::= v | v v | π1 v | π2 v.344

3. Terms: e ::= c | let x = c in e.345

The administrative normal form has two characteristic properties. The first346

is reflected in the syntax of computations c: a projection πi can only be applied347

to a value, and, similarly, a function application v1v2 can only be formed between348

two values. This excludes terms like π1(x,π2(y, z)) or (π1(f, g)) (π2(x, y)). The349

second property is reflected in the syntax of terms e: a let-expression letx = cine350

can only bind the result of a computation c to a variable x. Let-expressions351

cannot bind other let-expressions, that is, expressions like let x = (let y =352

e1 in e2) in e3 are excluded by the second property.353

Usual presentations of the ANF-transformation enforce both properties in a354

single transformation from Λ to ΛANF. Instead, we present the transformation355

to administrative normal form as a two-part transformation:356

Λ ΛQ ΛANF.A L
357

The first part of the transformation is a function A : Λ → ΛQ which enforces358

only the first of the two characteristic properties described above. A second359

transformation L : ΛQ → ΛANF then enforces the second property. By present-360

ing the ANF-transformation in this way, we can make the relation to focusing361

clearer. In Section 8 we will show that the first part of this transformation362

corresponds to focusing, whereas the second part of the transformation can be363

simulated by µ-reductions in Λµµ̃.364

Definition 6.2. The syntax of the intermediate normal form ΛQ is defined as365

follows:366

1. Values: v ::= λx.e | (v, v) | x.367

2. Terms: e ::= v | let x = e in e | e v | π1 e | π2 e.368

Note that Definition 6.2 only guarantees that pairs (v, v) consist of values,369

and that functions are always applied to values in a function application e v.370

The two transformations A and L are introduced in turn.371

6.1 From Λ to ΛQ
372

Recall that the first property that we want to enforce is that pairs consist of373

syntactic values, and that in function applications the function argument is374

already a value. The transformation A defined next guarantees the first property375

by binding any non-value argument which would violate this property to a fresh376

variable in a let-binding. For example, the term π1(π2(x, y)) is transformed by377

generating a fresh variable z, and binding the computation π2(x, y) to z in the378

computation π1z: A(π1(π2(x, y))) :! let z = π2 (x, y) in π1 z.379

Definition 6.3. The transformation A : Λ → ΛQ is defined as follows:380

A(x) :! x (A1)
A(λx.e) :! λx.A(e) (A2)

12

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Before

After

The Q-normal form for ND

48

1. Values: v ::= λx.e | (v, v) | x.343

2. Computations: c ::= v | v v | π1 v | π2 v.344

3. Terms: e ::= c | let x = c in e.345

The administrative normal form has two characteristic properties. The first346

is reflected in the syntax of computations c: a projection πi can only be applied347

to a value, and, similarly, a function application v1v2 can only be formed between348

two values. This excludes terms like π1(x,π2(y, z)) or (π1(f, g)) (π2(x, y)). The349

second property is reflected in the syntax of terms e: a let-expression letx = cine350

can only bind the result of a computation c to a variable x. Let-expressions351

cannot bind other let-expressions, that is, expressions like let x = (let y =352

e1 in e2) in e3 are excluded by the second property.353

Usual presentations of the ANF-transformation enforce both properties in a354

single transformation from Λ to ΛANF. Instead, we present the transformation355

to administrative normal form as a two-part transformation:356

Λ ΛQ ΛANF.A L
357

The first part of the transformation is a function A : Λ → ΛQ which enforces358

only the first of the two characteristic properties described above. A second359

transformation L : ΛQ → ΛANF then enforces the second property. By present-360

ing the ANF-transformation in this way, we can make the relation to focusing361

clearer. In Section 8 we will show that the first part of this transformation362

corresponds to focusing, whereas the second part of the transformation can be363

simulated by µ-reductions in Λµµ̃.364

Definition 6.2. The syntax of the intermediate normal form ΛQ is defined as365

follows:366

1. Values: v ::= λx.e | (v, v) | x.367

2. Terms: e ::= v | let x = e in e | e v | π1 e | π2 e.368

Note that Definition 6.2 only guarantees that pairs (v, v) consist of values,369

and that functions are always applied to values in a function application e v.370

The two transformations A and L are introduced in turn.371

6.1 From Λ to ΛQ
372

Recall that the first property that we want to enforce is that pairs consist of373

syntactic values, and that in function applications the function argument is374

already a value. The transformation A defined next guarantees the first property375

by binding any non-value argument which would violate this property to a fresh376

variable in a let-binding. For example, the term π1(π2(x, y)) is transformed by377

generating a fresh variable z, and binding the computation π2(x, y) to z in the378

computation π1z: A(π1(π2(x, y))) :! let z = π2 (x, y) in π1 z.379

Definition 6.3. The transformation A : Λ → ΛQ is defined as follows:380

A(x) :! x (A1)
A(λx.e) :! λx.A(e) (A2)

12

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Before

After

The Q-normal form for ND

49

1. Values: v ::= λx.e | (v, v) | x.343

2. Computations: c ::= v | v v | π1 v | π2 v.344

3. Terms: e ::= c | let x = c in e.345

The administrative normal form has two characteristic properties. The first346

is reflected in the syntax of computations c: a projection πi can only be applied347

to a value, and, similarly, a function application v1v2 can only be formed between348

two values. This excludes terms like π1(x,π2(y, z)) or (π1(f, g)) (π2(x, y)). The349

second property is reflected in the syntax of terms e: a let-expression letx = cine350

can only bind the result of a computation c to a variable x. Let-expressions351

cannot bind other let-expressions, that is, expressions like let x = (let y =352

e1 in e2) in e3 are excluded by the second property.353

Usual presentations of the ANF-transformation enforce both properties in a354

single transformation from Λ to ΛANF. Instead, we present the transformation355

to administrative normal form as a two-part transformation:356

Λ ΛQ ΛANF.A L
357

The first part of the transformation is a function A : Λ → ΛQ which enforces358

only the first of the two characteristic properties described above. A second359

transformation L : ΛQ → ΛANF then enforces the second property. By present-360

ing the ANF-transformation in this way, we can make the relation to focusing361

clearer. In Section 8 we will show that the first part of this transformation362

corresponds to focusing, whereas the second part of the transformation can be363

simulated by µ-reductions in Λµµ̃.364

Definition 6.2. The syntax of the intermediate normal form ΛQ is defined as365

follows:366

1. Values: v ::= λx.e | (v, v) | x.367

2. Terms: e ::= v | let x = e in e | e v | π1 e | π2 e.368

Note that Definition 6.2 only guarantees that pairs (v, v) consist of values,369

and that functions are always applied to values in a function application e v.370

The two transformations A and L are introduced in turn.371

6.1 From Λ to ΛQ
372

Recall that the first property that we want to enforce is that pairs consist of373

syntactic values, and that in function applications the function argument is374

already a value. The transformation A defined next guarantees the first property375

by binding any non-value argument which would violate this property to a fresh376

variable in a let-binding. For example, the term π1(π2(x, y)) is transformed by377

generating a fresh variable z, and binding the computation π2(x, y) to z in the378

computation π1z: A(π1(π2(x, y))) :! let z = π2 (x, y) in π1 z.379

Definition 6.3. The transformation A : Λ → ΛQ is defined as follows:380

A(x) :! x (A1)
A(λx.e) :! λx.A(e) (A2)

12

3 Syntax and type assignment136

We present the syntax and type-assignment rules of the λ-calculus and of the137

λµµ̃-calculus. The syntax for types is the same in both calculi.138

Definition 3.1 (Types). There are three kinds of types τ :139

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and conjunction types140

τ ∧ τ .141

3.1 The λ-calculus142

We use the standard simply typed λ-calculus with conjunction and a let-construct143

(cf., e.g., [13]). Since we only consider a call-by-value evaluation strategy, the144

values consist of variables, λ-abstractions and tuples of values.145

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows, where x146

are term variables:147

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.148

2. Values: v ::= λx.e | (v, v) | x.149

A judgement is a sequent of the form Γ # e : τ , where Γ is a (possibly empty)150

set of declarations {x1 : τ1, . . . , xn : τn}.151

Definition 3.3. The type assignment rules of the λ-calculus are:152

Var
Γ, x : τ # x : τ

Γ # e1 : σ Γ, x : σ # e2 : τ
Let

Γ # let x = e1 in e2 : τ

Γ, x : σ # e : τ
Abs

Γ # λx.e : σ → τ
Γ # e1 : σ → τ Γ # e2 : σ

App
Γ # e1 e2 : τ

Γ # e1 : σ Γ # e2 : τ Pair
Γ # (e1, e2) : σ ∧ τ

Γ # e : τ1 ∧ τ2 Proj
Γ # πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or i = 2.153

There are no structural rules since weakening and contraction are implicit.154

Note that the rule Let is derivable since any term letx = e1ine2 can be replaced155

by (λx.e2)e1 without changing the type in the conclusion of a type assignment.156

However, let-bindings are used to make the evaluation order explicit; we will157

come back to this point in Section 7.158

3.2 Towards the λµµ̃-calculus159

The λ-calculus corresponds to natural deduction for the {→,∧}-fragment of160

intuitionistic logic. The λµµ̃-calculus [4] was introduced as a system that corre-161

sponds to the classical sequent calculus, in which sequents have the form Γ # ∆162

with (possibly empty) sets Γ,∆ of formulas on either side of the sequent sym-163

bol #.164

5

Before

After

Translate into Q-normal form

50

1. Values: v ::= λx.e | (v, v) | x.343

2. Computations: c ::= v | v v | π1 v | π2 v.344

3. Terms: e ::= c | let x = c in e.345

The administrative normal form has two characteristic properties. The first346

is reflected in the syntax of computations c: a projection πi can only be applied347

to a value, and, similarly, a function application v1v2 can only be formed between348

two values. This excludes terms like π1(x,π2(y, z)) or (π1(f, g)) (π2(x, y)). The349

second property is reflected in the syntax of terms e: a let-expression letx = cine350

can only bind the result of a computation c to a variable x. Let-expressions351

cannot bind other let-expressions, that is, expressions like let x = (let y =352

e1 in e2) in e3 are excluded by the second property.353

Usual presentations of the ANF-transformation enforce both properties in a354

single transformation from Λ to ΛANF. Instead, we present the transformation355

to administrative normal form as a two-part transformation:356

Λ ΛQ ΛANF.A L
357

The first part of the transformation is a function A : Λ → ΛQ which enforces358

only the first of the two characteristic properties described above. A second359

transformation L : ΛQ → ΛANF then enforces the second property. By present-360

ing the ANF-transformation in this way, we can make the relation to focusing361

clearer. In Section 8 we will show that the first part of this transformation362

corresponds to focusing, whereas the second part of the transformation can be363

simulated by µ-reductions in Λµµ̃.364

Definition 6.2. The syntax of the intermediate normal form ΛQ is defined as365

follows:366

1. Values: v ::= λx.e | (v, v) | x.367

2. Terms: e ::= v | let x = e in e | e v | π1 e | π2 e.368

Note that Definition 6.2 only guarantees that pairs (v, v) consist of values,369

and that functions are always applied to values in a function application e v.370

The two transformations A and L are introduced in turn.371

6.1 From Λ to ΛQ
372

Recall that the first property that we want to enforce is that pairs consist of373

syntactic values, and that in function applications the function argument is374

already a value. The transformation A defined next guarantees the first property375

by binding any non-value argument which would violate this property to a fresh376

variable in a let-binding. For example, the term π1(π2(x, y)) is transformed by377

generating a fresh variable z, and binding the computation π2(x, y) to z in the378

computation π1z: A(π1(π2(x, y))) :! let z = π2 (x, y) in π1 z.379

Definition 6.3. The transformation A : Λ → ΛQ is defined as follows:380

A(x) :! x (A1)
A(λx.e) :! λx.A(e) (A2)

12A(let x = e1 in e2) :! let x = A(e1) inA(e2) (A3)
A(πi e) :! πi(A(e)) (A4)

A((v1, v2)) :! (A(v1),A(v2)) (A5)
A((v1, e2)) :! let x = A(e2) in (A(v1), x) (A6)
A((e1, v2)) :! let x = A(e1) in (x, v2) (A7)
A((e1, e2)) :! let x = A(e1) in (let y = A(e2) in (x, y)) (A8)

A(e1 v2) :! A(e1)A(v2) (A9)
A(e1 e2) :! let x = A(e2) inA(e1) x (A10)

Remark 6.4. Among the clauses of Definition 6.3, the clauses (A5) to (A7) are381

subsumed by (A8). Similarly, the clause (A9) is subsumed by (A10). This re-382

dundancy is an optimization which guarantees that the transformation behaves383

as the identity function on terms which are already in ΛQ.384

Example 6.5. The result of the transformation385

A(π1(π1(π1(x1, x2), x3), x4))

is the term386

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4),

where z1 and z2 are variables which are generated during the transformation.387

This example shows that the result of A is, in general, not yet in ΛANF.388

6.2 From ΛQ to ΛANF
389

The second property which we want to enforce is that in a let-construct letx =390

c in e the computation bound to the variable x must be of a restricted form.391

This is guaranteed by the transformation L, defined below in Definition 6.7.392

In order to define this transformation, we need to define the metaoperation @393

which operates on a continuation k and a value v from ΛANF:394

Definition 6.6. We define continuations:395

k ::= id | λv.let x = πi v in e | λv.let x = v v in e | λv.let x = v in e

where e and v range over expressions and values from ΛANF
µµ̃ . We also define the396

operation @ on the meta-level which takes a continuation k and a value v in397

the ΛANF
µµ̃ and returns an expression of ΛANF

µµ̃ . The operation @ is evaluated as398

follows:399

id @ v :! v (@1)
λv.let x = πi v in e@ v :! let x = πi v in e (@2)
λv.let x = v v2 in e@ v1 :! let x = v1 v2 in e (@3)

λv.let x = v in e@ v :! let x = v in e (@4)

With this technical tool we can now define the transformation L.400

13

The Q Normal Form for SC

51

Sequent Calculus
Overview

52

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

The Q-normal form for SC

53

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

Definition 6.7. The transformation L : ΛQ → ΛANF is defined as follows.401

Values
L(x) :! x (L1)

L(λx.e) :! λx.Lid(e) (L2)
L((v1, v2)) :! (L(v1),L(v2)) (L3)

Terms
L(e) :! Lid(e) (L4)

Lk(e1 v2) :! Lλv.let x=v L(v2) in k @ x(e1) (L5)
Lk(πi e) :! Lλv.let x=πi v in k @ x(e) (L6)

Lk(v) :! k @ L(v) (L7)
Lk(let x = e1 in e2) :! Lλv.let x=v in Lk(e2)

(e1) (L8)

Example 6.8. As an example of the transformation L, consider the term402

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4),

from Example 6.5, which can be transformed into ΛANF as follows:403

Lid(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4))

= Lλv1.let z1=v1 in Lid(π1(z1,x4))
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv1.let z1=v1 in π1(z1,x4)
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv2.let z2=v2 in Lλv1.let z1=v1 in π1(z1,x4)(π1(z2,x3))
(π1(x1, x2))

= Lλv2.let z2=v2 in (let z1=π1(z2,x3) in π1(z1,x4))
(π1(x1, x2))

= let z2 = π1 (x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).

The term was transformed into ΛANF by (in a certain way) moving the let-404

binding of z2 to the outside of the let-binding of z1.405

7 The focusing transformation406

In distinction to the dynamic focusing rules of Definition 5.5, we now consider407

only static focusing. We first introduce the focused subsyntax ΛQ
µµ̃ as a subset408

of Λµµ̃ (Definition 3.4).3409

Definition 7.1. The focused subsyntax ΛQ
µµ̃ for the call-by-value evaluation410

strategy is defined as follows:411

1. Terms: t ::= w | µα.c.412

2. Coterms: s ::= α | w · s | π1 s | π2 s | µ̃x.c.413

3. Commands: c ::= 〈t | s〉.414

4. Values: w ::= λx.t | (w,w) | x.415

3ΛQ
µµ̃ corresponds to the subsyntax LKQ defined in [4].

14

Before

After

The Q-normal form for SC

54

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

Definition 6.7. The transformation L : ΛQ → ΛANF is defined as follows.401

Values
L(x) :! x (L1)

L(λx.e) :! λx.Lid(e) (L2)
L((v1, v2)) :! (L(v1),L(v2)) (L3)

Terms
L(e) :! Lid(e) (L4)

Lk(e1 v2) :! Lλv.let x=v L(v2) in k @ x(e1) (L5)
Lk(πi e) :! Lλv.let x=πi v in k @ x(e) (L6)

Lk(v) :! k @ L(v) (L7)
Lk(let x = e1 in e2) :! Lλv.let x=v in Lk(e2)

(e1) (L8)

Example 6.8. As an example of the transformation L, consider the term402

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4),

from Example 6.5, which can be transformed into ΛANF as follows:403

Lid(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4))

= Lλv1.let z1=v1 in Lid(π1(z1,x4))
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv1.let z1=v1 in π1(z1,x4)
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv2.let z2=v2 in Lλv1.let z1=v1 in π1(z1,x4)(π1(z2,x3))
(π1(x1, x2))

= Lλv2.let z2=v2 in (let z1=π1(z2,x3) in π1(z1,x4))
(π1(x1, x2))

= let z2 = π1 (x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).

The term was transformed into ΛANF by (in a certain way) moving the let-404

binding of z2 to the outside of the let-binding of z1.405

7 The focusing transformation406

In distinction to the dynamic focusing rules of Definition 5.5, we now consider407

only static focusing. We first introduce the focused subsyntax ΛQ
µµ̃ as a subset408

of Λµµ̃ (Definition 3.4).3409

Definition 7.1. The focused subsyntax ΛQ
µµ̃ for the call-by-value evaluation410

strategy is defined as follows:411

1. Terms: t ::= w | µα.c.412

2. Coterms: s ::= α | w · s | π1 s | π2 s | µ̃x.c.413

3. Commands: c ::= 〈t | s〉.414

4. Values: w ::= λx.t | (w,w) | x.415

3ΛQ
µµ̃ corresponds to the subsyntax LKQ defined in [4].

14

Before

After

The Q-normal form for SC

55

become coterms. The terms of the λµµ̃-calculus therefore comprise the intro-200

duction forms λx.t and (t, t) of the λ-calculus, whereas the coterms comprise201

the elimination forms πi s and t · s.202

There are different ways to understand a coterm t · s. First, since an im-203

plication ϕ → τ is false if ϕ is true and τ is false, one can interpret t · s as a204

constructive refutation of an implication ϕ → τ , consisting of a proof t of ϕ205

and a refutation s of τ . Alternatively, in a computational context, t · s can be206

thought of as a stack frame in a call stack with argument t on top and s being207

the rest of the stack.208

There is only one form of command in the λµµ̃-calculus: the cut 〈t | s〉,209

which combines a term with a coterm. The cut rule can be interpreted as a210

primitive way to construct a contradiction, namely by providing both a proof211

and a refutation of the same formula.212

This leaves us with the two remaining constructs of µ- and µ̃-abstraction,213

which, again, can be understood in two different ways. First, from a logical214

point of view, the µ-construct encodes a form of reductio ad absurdum at the215

level of judgements:216

[ϕ is false]

..
.

contradiction (µ)
ϕ is true

This explains why the addition of µ-abstraction makes the logic classical. The217

µ̃-construct, on the other hand, encodes the logical inference218

[ϕ is true]

..
.

contradiction (µ̃)
ϕ is false

Both inferences are on the level of judgements and do not involve logical con-219

stants; neither absurdity ⊥ nor negation ¬ are used.220

Second, from an operational point of view we see that µ̃ behaves very sim-221

ilarly to the let-construct of the λ-calculus. In a command 〈t | µ̃x.c〉, the222

µ̃-abstraction is used to bind the term t in the remaining computation c. The223

µ-construct behaves similarly to control operators like call/cc or C (cf. [2, 11]).224

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as follows, where225

x are term variables and α are coterm variables:226

1. Terms: t ::= x | λx.t | (t, t) | µα.c.227

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.228

3. Commands: c ::= 〈t | s〉.229

4. Values: w ::= λx.t | (w,w) | x.230

In addition to term variable contexts Γ ! {x1 : τ1, . . . , xn : τn} we now have231

to consider also coterm variable contexts ∆ ! {α1 : τ1, . . . ,αn : τn}.232

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for the three233

judgement forms234

7

Definition 6.7. The transformation L : ΛQ → ΛANF is defined as follows.401

Values
L(x) :! x (L1)

L(λx.e) :! λx.Lid(e) (L2)
L((v1, v2)) :! (L(v1),L(v2)) (L3)

Terms
L(e) :! Lid(e) (L4)

Lk(e1 v2) :! Lλv.let x=v L(v2) in k @ x(e1) (L5)
Lk(πi e) :! Lλv.let x=πi v in k @ x(e) (L6)

Lk(v) :! k @ L(v) (L7)
Lk(let x = e1 in e2) :! Lλv.let x=v in Lk(e2)

(e1) (L8)

Example 6.8. As an example of the transformation L, consider the term402

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4),

from Example 6.5, which can be transformed into ΛANF as follows:403

Lid(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1 (z1, x4))

= Lλv1.let z1=v1 in Lid(π1(z1,x4))
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv1.let z1=v1 in π1(z1,x4)
(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv2.let z2=v2 in Lλv1.let z1=v1 in π1(z1,x4)(π1(z2,x3))
(π1(x1, x2))

= Lλv2.let z2=v2 in (let z1=π1(z2,x3) in π1(z1,x4))
(π1(x1, x2))

= let z2 = π1 (x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).

The term was transformed into ΛANF by (in a certain way) moving the let-404

binding of z2 to the outside of the let-binding of z1.405

7 The focusing transformation406

In distinction to the dynamic focusing rules of Definition 5.5, we now consider407

only static focusing. We first introduce the focused subsyntax ΛQ
µµ̃ as a subset408

of Λµµ̃ (Definition 3.4).3409

Definition 7.1. The focused subsyntax ΛQ
µµ̃ for the call-by-value evaluation410

strategy is defined as follows:411

1. Terms: t ::= w | µα.c.412

2. Coterms: s ::= α | w · s | π1 s | π2 s | µ̃x.c.413

3. Commands: c ::= 〈t | s〉.414

4. Values: w ::= λx.t | (w,w) | x.415

3ΛQ
µµ̃ corresponds to the subsyntax LKQ defined in [4].

14

Before

After

Translate into Q-normal form

56

The focused subsyntax ΛQ
µµ̃ differs in two respects from Λµµ̃. First, terms416

t must now either be values w or abstractions µα.c. This excludes terms like417

(µα.c, t) and (t, µα.c) from the subsyntax ΛQ
µµ̃, which are part of the syntax418

of terms of Definition 3.4. This corresponds precisely to the restriction that419

constructors can only be applied to values. Second, the syntax of coterms has420

been changed by requiring the function argument in a coterm t · s to be a value;421

that is, we require w ·s. This corresponds to the requirement that functions can422

syntactically only be applied to values.423

Lemma 7.2. For any term e ∈ ΛQ, !e" ∈ ΛQ
µµ̃.424

Proof. By induction on e.425

1. Case e ! let x = e1 in e2: the translation of e is µα.〈!e1" | µ̃x.〈!e2" | α〉〉.426

Using the induction hypothesis for e1 and e2, this term is in the subsyntax427

ΛQ
µµ̃.428

2. If e is of the form e1 v2, then the translation of e is µα.〈!e1" | !v2" · α〉. By429

Lemma 4.3, !v2" is a value, and by the induction hypothesis both !e1" and430

!v2" are in the subsyntax ΛQ
µµ̃, so the resulting term is in the subsyntax ΛQ

µµ̃.431

3. If e is of the form πi e1, then !πi e1" is µα.〈!e1" | πi α〉. Using the induction432

hypothesis for e1, !e1" is in ΛQ
µµ̃. Therefore !πi e1" is also in ΛQ

µµ̃.433

4. If e ! v, then we have to distinguish the following cases:434

(a) If v ! x, then !x" ! x, which is in ΛQ
µµ̃.435

(b) If v ! (v1, v2), then !(v1, v2)" ! (!v1", !v2"). By Lemma 4.3, both !vi"436

are values, and by the induction hypothesis they are in the subsyntax437

ΛQ
µµ̃. Therefore !v" is also in ΛQ

µµ̃.438

(c) If v ! λx.e, then !λx.e" ! λx.!e". By the induction hypothesis !e" is in439

ΛQ
µµ̃, therefore !v" is also in ΛQ

µµ̃.440

The subsyntax does not restrict the set of derivable sequents, since any term,441

coterm or command in the unrestricted syntax can be translated into the focused442

subsyntax ΛQ
µµ̃ by using the following static focusing transformation.443

Definition 7.3. The static focusing transformation F : Λµµ̃ → ΛQ
µµ̃ is defined444

as follows:445

Terms
F(x) :! x (F1)

F(µα.c) :! µα.F(c) (F2)
F(λx.e) :! λx.F(e) (F3)

F((w1, w2)) :! (F(w1),F(w2)) (F4)
F((w1, t2)) :! µα.〈F(t2) | µ̃x.〈(F(w1), x) | α〉〉 (F5)
F((t1, w2)) :! µα.〈F(t1) | µ̃x.〈(x,F(w2)) | α〉〉 (F6)
F((t1, t2)) :! µα.〈F(t1) | µ̃x.〈µβ.〈F(t2) | µ̃y.〈(x, y) | β〉〉 | α〉〉 (F7)

Coterms
F(α) :! α (F8)

15
F(µ̃x.c) :! µ̃x.F(c) (F9)
F(πi s) :! πi F(s) (F10)
F(w · s) :! F(w) · F(s) (F11)
F(t · s) :! µ̃x.〈F(t) | µ̃y.〈x | y · F(s)〉〉 (F12)

Commands
F(〈t | s〉) :! 〈F(t) | F(s)〉 (F13)

F(〈t1 | t2 · s〉) :! 〈F(t2) | µ̃x.〈µα.〈F(t1) | x · α〉 | F(s)〉〉 (F14)
In general, when several clauses are applicable, the most specific clause446

should be applied. The clauses (F4), (F5) and (F6) are subsumed by the more447

general clause (F7), and (F11) is subsumed by the clause (F12). The presence448

of these additional clauses guarantees that F behaves as the identity function449

when it is applied to a term, coterm or command which is already in the sub-450

syntax ΛQ
µµ̃. With these optimizations, our definition corresponds the one given451

in [6, Fig. 18], with the exception of the clause (F14). The additional clause452

(F14) is necessary to guarantee that the functions !−", A(−) and F(−) com-453

mute up to α-equivalence, as shown by Theorem 8.1. Without the clause (F14),454

Theorem 8.1 has to be slightly weakened to Theorem 8.2.455

Lemma 7.4 (F preserves typeability). For all terms t, coterms s and com-456

mands c:457

1. If Γ $ t : τ |∆, then Γ $ F(t) : τ |∆.458

2. If Γ | s : τ $ ∆, then Γ | F(s) : τ $ ∆.459

3. If c : (Γ $ ∆), then F(c) : (Γ $ ∆).460

Proof. By simultaneous structural induction on t, s and c, respectively.461

8 The main result462

As explained in Section 6, the ANF-transformation can be split into a purely463

local transformation A and a global transformation L. We now show what these464

two parts correspond to in the λµµ̃-calculus.465

8.1 The correspondence between A and F466

Theorem 8.1 (Focusing reflects the ANF-transformation). For all λ-terms e,467

we have F(!e") ! !A(e)".468

Proof. See Appendix A.469

If we omit the focusing rule (F14) from Definition 7.3, then Theorem 8.1 no470

longer holds up to syntactic equality (!). Instead, the following weaker result471

(Theorem 8.2) holds for ηµ-equality ≡, which includes η-equivalence:472

µ̃x.〈x | s〉 ≡η s (for x not free in s).

Theorem 8.2 (Focusing reflects the ANF-transformation). For all λ-terms e,473

we have F(!e") ≡ !A(e)".474

Proof. See Appendix A.475

16

Summary

57

classical properties with a good computational interpretation. Such an interpre-39

tation was provided when the relationship between classical axioms and control40

operators was discovered by Griffin [11]. This discovery led to the development41

of several term systems for encoding sequent calculus proofs. One such system42

is the λµµ̃-calculus introduced by Curien and Herbelin [4].43

We will use the λ-calculus and the λµµ̃-calculus, which are related by a trans-44

lation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the λ-calculus we define45

the administrative normal form ΛANF, together with a transformation from Λ46

to ΛANF. In distinction to the usual presentation of the ANF-transformation,47

we divide this transformation into two parts by using an intermediate normal48

form ΛQ between Λ and ΛANF. For the Λµµ̃-calculus we define the so-called49

focused normal form ΛQ
µµ̃ (which corresponds to the subsyntax LKQ of [4]).50

The focusing transformation from Λµµ̃ to ΛQ
µµ̃ is adapted from [6]. We define51

a new normal form ΛANF
µµ̃ for λµµ̃-terms, which exactly mirrors the syntactic52

restrictions that characterize the administrative normal form ΛANF for λ-terms.53

As our main result, summarized in Fig. 1, we show how the ANF-transfor-54

mation on λ-terms corresponds to static focusing of λµµ̃-terms. The first part55

of the ANF-transformation corresponds precisely to the static focusing transfor-56

mation. That is, it commutes with focusing via the translation function up to57

α-equivalence. The second part of the ANF-transformation can be simulated in58

the λµµ̃-calculus by µ-reductions.59

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms and
focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main idea60

using an informal example. In Section 3 we formalize the syntax and type61

assignment rules for the λ-calculus and the λµµ̃-calculus, and in Section 4 we62

give the translation from the former to the latter. In Section 5 we provide the63

call-by-value operational semantics for both calculi. We introduce the ANF-64

transformation in Section 6 and static focusing in Section 7. The main result is65

formulated and proved in Section 8.66

2

Future Work

• Extend to call-by-name (easy) and call-by-need/co-need (hard).

• Add control operators to the lambda-calculus to be able to translate in both
directions.

• Fully mechanized verification (underway).

58

Thank you for your attention!

59

