Administrative Normal Forms and Focusing for Lambda Calculf

A bird's-eye view

Some context in lieu of motivation

- Compilation of functional programming languages and proof assistants based on type theory.
- Efficient implementation of logic on a computer.
- Use of abstract machines as an intermediary between substitution based evaluation (e.g beta-reduction) and low-level machines (e.g. x86-Assembly).

A Tale of Two Calculi

Natural Deduction and Sequent Calculus

- Natural deduction (ND) and Sequent Calculus (SC) developed in the same paper by G. Gentzen (1935).
- Curry and Howard discover the relation between combinatory logic and Hilbert calculus, lambda calculus and ND, but no similar system for classical SC is found.
- Griffin (1989) discovers that the type of control operator call/cc is Peirce's law.
- Development of $\lambda \mu$-calculus by Parigot (1992), and $\lambda \mu \tilde{\mu}$-calculus by Curien and Herbelin (2000).
- Since then: Lot of work on $\lambda \mu \tilde{\mu}$-calculus; Ariola, Downen, Munch-Maccagnoni, Zeilberger, Wadler...

Sequent Calculus as a Compiler Intermediate Language

Paul Downen Luke Maurer
Zena M. Ariola
University of Oregon, USA
\{pdownen, maurerl,ariola\}@cs.uoregon.edu

Simon Peyton Jones
Microsoft Research Cambridge, UK simonpj@microsoft.com

Relating ND and SC

Two sides of the same coin

- Two communities: Logicians/proof theorists and PLT people.
- Focusing was introduced by Andreoli (1992) for proof search in linear logic.
- The A-normal form was introduced by Sabry and Felleisen (1992) as an optimization of CPS based compilers.
- We show how to relate the two.

Example

Example (ND)

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

Example (ND)

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

Tupling!

Example (ND)

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

Projections!

Example (ND)

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

Numbers!

Example (ND)

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

Should evaluate in one step to $\pi_{2}(1,3)$ (CBV!)

Example (ND)

Redex
Evaluation context $\pi_{2}\left(\pi_{1}(1,4), 3\right)$

Very inefficient! We want to get rid of search for next redex.

Example (ND)

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

Compile to A-normal form:
let $x=\pi_{1}(1,4)$ in $\left(\right.$ let $y=\pi_{2}(x, 3)$ in $\left.y\right)$

Enter the sequent calculus

Example (SC)

The same example in sequent calculus

ND:

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

SC: $\quad \mu \alpha \cdot\left\langle\left(\mu \beta \cdot\left\langle(1,4) \mid \pi_{1} \beta\right\rangle, 3\right) \mid \pi_{2} \alpha\right\rangle$.

Example (SC)

The same example in sequent calculus

ND:

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

$$
\mathrm{SC}: \quad \mu \alpha \cdot\left\langle\left(\mu \beta \cdot\left\langle(1,4) \mid \pi_{1} \beta\right\rangle, 3\right) \mid \pi_{2} \alpha\right\rangle .
$$

Example (SC)

The same example in sequent calculus

ND:

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

$$
\mathrm{SC}: \quad \mu \alpha \cdot\left\langle\left(\mu \beta \cdot\left\langle(1,4) \mid \pi_{1} \beta\right\rangle, 3\right) \mid \pi_{2} \alpha\right\rangle .
$$

Example (SC)

The same example in sequent calculus

ND:

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

SC:

$$
\mu \alpha \cdot\left\langle\left(\mu \beta \cdot\left\langle(1,4) \mid \pi_{1} \beta\right\rangle, 3\right) \mid \pi_{2} \alpha\right\rangle .
$$

Example (SC)

The same example in sequent calculus

ND:

$$
\pi_{2}\left(\pi_{1}(1,4), 3\right)
$$

$\mathrm{SC}: \quad \mu \alpha \cdot\left\langle\left(\mu \beta \cdot\left\langle(1,4) \mid \pi_{1} \beta\right\rangle, 3\right) \mid \pi_{2} \alpha\right\rangle$.

Example (SC)
 The focused normal form

$$
\mu \alpha \cdot\left\langle\mu \beta \cdot\left\langle(1,4) \mid \pi_{1} \beta\right\rangle \mid \tilde{\mu} x \cdot\left\langle(x, 3) \mid \pi_{2} \alpha\right\rangle\right\rangle .
$$

$$
\text { let } x=\pi_{1}(1,4) \text { in }\left(\text { let } y=\pi_{2}(x, 3) \text { in } y\right)
$$

Overview

The Lambda Calculus

Lambda Calculus

Overview

Lambda Calculus

Types

$$
\tau::=X|\tau \rightarrow \tau| \tau \wedge \tau
$$

Lambda Calculus

Terms

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $\quad v::=\lambda x . e|(v, v)| x$.

Lambda Calculus

Terms

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $\quad v::=\lambda x . e|(v, v)| x$.

Lambda Calculus

Terms

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $\quad v::=\lambda x . e|(v, v)| x$.

Lambda Calculus

Terms

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $\quad v::=\lambda x . e|(v, v)| x$.

Lambda Calculus

Typing rules

$$
\begin{gathered}
\overline{\Gamma, x: \tau \vdash x: \tau} \mathrm{VAR} \\
\frac{\Gamma, x: \sigma \vdash e: \tau}{\Gamma \vdash \lambda x . e: \sigma \rightarrow \tau} \mathrm{ABS} \\
\frac{\Gamma \vdash e_{1}: \sigma \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash\left(e_{1}, e_{2}\right): \sigma \wedge \tau} \mathrm{PAIR}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash e_{1}: \sigma \quad \Gamma, x: \sigma \vdash e_{2}: \tau}{\Gamma \vdash \operatorname{let} x=e_{1} \operatorname{in} e_{2}: \tau} \text { LET } \\
& \frac{\Gamma \vdash e_{1}: \sigma \rightarrow \tau \quad \Gamma \vdash e_{2}: \sigma}{\Gamma \vdash e_{1} e_{2}: \tau} \mathrm{APP} \\
& \frac{\Gamma \vdash e: \tau_{1} \wedge \tau_{2}}{\Gamma \vdash \pi_{i} e: \tau_{i}} \mathrm{PROJ}
\end{aligned}
$$

The Sequent Calculus

Sequent Calculus

Overview

Sequent Calculus

Terms

Terms: $t::=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.
Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $\quad w::=\lambda x . t|(w, w)| x$.

Judgement forms

1. $\Gamma \vdash[\varphi], \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is true."
2. $\Gamma,[\varphi] \vdash \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is false."
3. $\Gamma \vdash \Delta$
"The assumption that all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false is contradictory."

Judgement forms

1. $\Gamma \vdash[\varphi], \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is true."
2. $\Gamma,[\varphi] \vdash \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is false."
3. $\Gamma \vdash \Delta$
"The assumption that all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false is contradictory."

Judgement forms

1. $\Gamma \vdash[\varphi], \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is true."
2. $\Gamma,[\varphi] \vdash \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is false."
3. $\Gamma \vdash \Delta$
"The assumption that all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false is contradictory."

Judgement forms

1. $\Gamma \vdash[\varphi], \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is true."
2. $\Gamma,[\varphi] \vdash \Delta$
"If all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false, then φ is false."
3. $\Gamma \vdash \Delta$
"The assumption that all $\gamma \in \Gamma$ are true and all $\delta \in \Delta$ are false is contradictory."

Sequent Calculus

Terms
Terms: $e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $\quad v::=\lambda x . e|(v, v)| x$.
Terms: $t::=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.
Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Sequent Calculus

Terms

Terms: $e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $v::=\lambda x . e|(v, v)| x$.
Terms: $t::=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.
Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Sequent Calculus

Terms
Terms: $e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $v::=\lambda x . e|(v, v)| x$.
Terms: $t::=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.
Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Sequent Calculus

Terms

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $\quad v::=\lambda x . e|(v, v)| x$.
Terms: $t::=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.
Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Sequent Calculus

Typing rules

Coterm typing

$$
\begin{gathered}
\overline{\Gamma \mid \alpha: \tau \vdash \alpha: \tau, \Delta} \operatorname{VAR}_{\alpha} \\
\left.\frac{\Gamma \vdash t: \tau \mid \Delta}{\Gamma \mid t \cdot s: \tau \rightarrow \sigma \vdash \Delta} \mathrm{C} \right\rvert\, s: \sigma \vdash \Delta \\
\frac{\Gamma \mid s: \tau_{i} \vdash \Delta}{\Gamma \mid \pi_{1} s: \tau_{1} \wedge \tau_{2} \vdash \Delta} \mathrm{PROJ} \\
\frac{c:(\Gamma, x: \tau \vdash \Delta)}{\Gamma \mid \tilde{\mu} x . c \vdash \Delta} \mathrm{MU} \sim
\end{gathered}
$$

Command typing

$$
\frac{\Gamma \vdash t: \tau|\Delta \quad \Gamma| s: \tau \vdash \Delta}{\langle t \mid s\rangle:(\Gamma \vdash \Delta)} \text { CUT }
$$

Translating from ND to SC

Sequent Calculus

Overview

Translation

$$
\begin{aligned}
\llbracket x \rrbracket & : \bumpeq x \\
\llbracket \lambda x . e \rrbracket & : \bumpeq \lambda x \cdot \llbracket e \rrbracket \\
\llbracket\left(e_{1}, e_{2}\right) \rrbracket & : \bumpeq\left(\llbracket e_{1} \rrbracket, \llbracket e_{2} \rrbracket\right) \\
\llbracket e_{1} e_{2} \rrbracket & : \bumpeq \mu \alpha .\left\langle\llbracket e_{1} \rrbracket \mid \llbracket e_{2} \rrbracket \cdot \alpha\right\rangle \\
\llbracket \pi_{i} e \rrbracket & : \bumpeq \mu \alpha \cdot\left\langle\llbracket e \rrbracket \mid \pi_{i} \alpha\right\rangle \\
\llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket & : \bumpeq \mu \alpha .\left\langle\llbracket e_{1} \rrbracket \mid \tilde{\mu} x .\left\langle\llbracket e_{2} \rrbracket \mid \alpha\right\rangle\right\rangle .
\end{aligned}
$$

The Q Normal Form for ND

Sequent Calculus

Overview

The Q-normal form for ND

Before

Terms: $e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $v::=\lambda x . e|(v, v)| x$.

After

Values: $\quad v::=\lambda x . e|(v, v)| x$.
Terms: $\quad e::=v \mid \operatorname{let} x=e$ in $e|e v| \pi_{1} e \mid \pi_{2} e$.

The Q-normal form for ND

Before

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $v::=\lambda x . e|(v, v)| x$.

After

Values: $\quad v::=\lambda x . e|(v, v)| x$.
Terms: $\quad e::=v \mid$ let $x=e$ in $e|e v| \pi_{1} e \mid \pi_{2} e$.

The Q-normal form for ND

Before

Terms: $\quad e::=x|\lambda x . e| e e|(e, e)| \pi_{1} e\left|\pi_{2} e\right|$ let $x=e$ in e.
Values: $v::=\lambda x . e|(v, v)| x$.

After

Values: $\quad v:=\lambda x . e|(v, v)| x$.
Terms: $\quad e::=v \mid$ let $x=e$ in $e|e v| \pi_{1} e \mid \pi_{2} e$.

Translate into Q-normal form

$$
\begin{align*}
\mathcal{A}(x) & : \bumpeq x \\
\mathcal{A}(\lambda x . e) & : \bumpeq \lambda x \cdot \mathcal{A}(e) \\
\mathcal{A}\left(\text { let } x=e_{1} \operatorname{in} e_{2}\right) & : \bumpeq \operatorname{let} x=\mathcal{A}\left(e_{1}\right) \operatorname{in} \mathcal{A}\left(e_{2}\right) \\
\mathcal{A}\left(\pi_{i} e\right) & : \bumpeq \pi_{i}(\mathcal{A}(e)) \\
\mathcal{A}\left(\left(v_{1}, v_{2}\right)\right) & : \bumpeq\left(\mathcal{A}\left(v_{1}\right), \mathcal{A}\left(v_{2}\right)\right) \\
\mathcal{A}\left(\left(v_{1}, e_{2}\right)\right) & : \bumpeq \operatorname{let} x=\mathcal{A}\left(e_{2}\right) \operatorname{in}\left(\mathcal{A}\left(v_{1}\right), x\right) \\
\mathcal{A}\left(\left(e_{1}, v_{2}\right)\right) & : \bumpeq \operatorname{let} x=\mathcal{A}\left(e_{1}\right) \operatorname{in}\left(x, v_{2}\right) \\
\mathcal{A}\left(\left(e_{1}, e_{2}\right)\right) & : \bumpeq \operatorname{let} x=\mathcal{A}\left(e_{1}\right) \operatorname{in}\left(\operatorname{let} y=\mathcal{A}\left(e_{2}\right) \operatorname{in}(x, y)\right) \\
\mathcal{A}\left(e_{1} v_{2}\right) & : \bumpeq \mathcal{A}\left(e_{1}\right) \mathcal{A}\left(v_{2}\right) \\
\mathcal{A}\left(e_{1} e_{2}\right) & : \bumpeq \operatorname{let} x=\mathcal{A}\left(e_{2}\right) \operatorname{in} \mathcal{A}\left(e_{1}\right) x
\end{align*}
$$

The Q Normal Form for SC

Sequent Calculus

Overview

The Q-normal form for SC

Terms: $t:=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.

Before

After

Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Terms: $t::=w \mid \mu \alpha . c$.
Coterms: $s::=\alpha|w \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

The Q-normal form for SC

Terms: $t:=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.

Before

After

Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Terms: $t::=w \mid \mu \alpha . c$.
Coterms: $s::=\alpha|w \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

The Q-normal form for SC

Terms: $t:=x|\lambda x . t|(t, t) \mid \mu \alpha . c$.

Before

After

Coterms: $s::=\alpha|t \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Terms: $t::=w \mid \mu \alpha . c$.
Coterms: $s:=\alpha|w \cdot s| \pi_{1} s\left|\pi_{2} s\right| \tilde{\mu} x . c$.
Commands: $c::=\langle t \mid s\rangle$.
Values: $w::=\lambda x . t|(w, w)| x$.

Translate into Q-normal form

Terms		
$\mathcal{F}(x): \bumpeq x$	$\left(\mathcal{F}_{1}\right)$	
$\mathcal{F}(\mu \alpha . c)$	$: \bumpeq \mu \alpha . \mathcal{F}(c)$	$\left(\mathcal{F}_{2}\right)$
$\mathcal{F}(\lambda x . e)$	$: \bumpeq \lambda x . \mathcal{F}(e)$	$\left(\mathcal{F}_{3}\right)$
$\mathcal{F}\left(\left(w_{1}, w_{2}\right)\right)$	$: \bumpeq\left(\mathcal{F}\left(w_{1}\right), \mathcal{F}\left(w_{2}\right)\right)$	$\left(\mathcal{F}_{4}\right)$
$\mathcal{F}\left(\left(w_{1}, t_{2}\right)\right)$	$: \bumpeq \mu \alpha .\left\langle\mathcal{F}\left(t_{2}\right) \mid \tilde{\mu} x .\left\langle\left(\mathcal{F}\left(w_{1}\right), x\right) \mid \alpha\right\rangle\right\rangle$	$\left(\mathcal{F}_{5}\right)$
$\mathcal{F}\left(\left(t_{1}, w_{2}\right)\right)$	$: \bumpeq \mu \alpha .\left\langle\mathcal{F}\left(t_{1}\right) \mid \tilde{\mu} x .\left\langle\left(x, \mathcal{F}\left(w_{2}\right)\right) \mid \alpha\right\rangle\right\rangle$	$\left(\mathcal{F}_{6}\right)$
$\mathcal{F}\left(\left(t_{1}, t_{2}\right)\right)$	$: \bumpeq \mu \alpha .\left\langle\mathcal{F}\left(t_{1}\right) \mid \tilde{\mu} x .\left\langle\mu \beta .\left\langle\mathcal{F}\left(t_{2}\right) \mid \tilde{\mu} y .\langle(x, y) \mid \beta\rangle\right\rangle \mid \alpha\right\rangle\right\rangle$	$\left(\mathcal{F}_{7}\right)$

Coterms

$\mathcal{F}(\alpha): \bumpeq \alpha$	$\left(\mathcal{F}_{8}\right)$	
$\mathcal{F}(\tilde{\mu} x . c): \bumpeq \tilde{\mu} x . \mathcal{F}(c)$	$\left(\mathcal{F}_{9}\right)$	
$\mathcal{F}\left(\pi_{i} s\right): \bumpeq \pi_{i} \mathcal{F}(s)$	$\left(\mathcal{F}_{10}\right)$	
$\mathcal{F}(w \cdot s): \bumpeq \mathcal{F}(w) \cdot \mathcal{F}(s)$	$\left(\mathcal{F}_{11}\right)$	
$\mathcal{F}(t \cdot s): \bumpeq \tilde{\mu} x .\langle\mathcal{F}(t) \mid \tilde{\mu} y \cdot\langle x \mid y \cdot \mathcal{F}(s)\rangle\rangle$		
Commands		
$\mathcal{F}(\langle t \mid s\rangle): \bumpeq\langle\mathcal{F}(t) \mid \mathcal{F}(s)\rangle$		
$\left.\mathcal{F}_{12}\right)$		
$\left(\left\langle t_{1} \mid t_{2} \cdot s\right\rangle\right): \bumpeq\left\langle\mathcal{F}\left(t_{2}\right) \mid \tilde{\mu} x \cdot\left\langle\mu \alpha .\left\langle\mathcal{F}\left(t_{1}\right) \mid x \cdot \alpha\right\rangle \mid \mathcal{F}(s)\right\rangle\right\rangle$	$\left(\mathcal{F}_{13}\right)$	
	$\left(\mathcal{F}_{14}\right)$	

Summary

Future Work

- Extend to call-by-name (easy) and call-by-need/co-need (hard).
- Add control operators to the lambda-calculus to be able to translate in both directions.
- Fully mechanized verification (underway).

Thank you for your attention!

