
David Binder University of Tübingen

From FP to OOP and Back,
Consistently
UNSOUND '24

￼1

This was not supposed to be a
remote talk :(

2

• Joint work with Ingo Skupin, Tim
Süberkrüb and Klaus Ostermann

• Check out my talk on
Wednesday!

• Let's start with a look at the work
we want to build upon

This is Work in Progress Deriving Dependently-Typed OOP from First Principles
DAVID BINDER, University of Tübingen, Germany
INGO SKUPIN, University of Tübingen, Germany
TIM SÜBERKRÜB, Aleph Alpha Research at IPAI, Germany
KLAUS OSTERMANN, University of Tübingen, Germany

The expression problem describes howmost types can easily be extended with newways to produce the type or
new ways to consume the type, but not both. When abstract syntax trees are defined as an algebraic data type,
for example, they can easily be extended with new consumers, such as print or eval, but adding a new con-
structor requires the modification of all existing pattern matches. The expression problem is one way to eluci-
date the difference between functional or data-oriented programs (easily extendable by new consumers) and
object-oriented programs (easily extendable by new producers). This difference between programs which are
extensible by new producers or new consumers also exists for dependently typed programming, but with one
core difference: Dependently-typed programming almost exclusively follows the functional programming
model and not the object-oriented model, which leaves an interesting space in the programming language
landscape unexplored. In this paper, we explore the field of dependently-typed object-oriented programming
by deriving it from first principles using the principle of duality. That is, we do not extend an existing object-
oriented formalism with dependent types in an ad-hoc fashion, but instead start from a familiar data-oriented
language and derive its dual fragment by the systematic use of defunctionalization and refunctionalization.
Our central contribution is a dependently typed calculus which contains two dual language fragments. We
provide type- and semantics-preserving transformations between these two language fragments: defunction-
alization and refunctionalization. We have implemented this language and these transformations and use this
implementation to explain the various ways in which constructions in dependently typed programming can
be explained as special instances of the general phenomenon of duality.

CCS Concepts: • Theory of computation → Type theory; • Software and its engineering → Software
verification; Data types and structures; Classes and objects.

Additional KeyWords and Phrases: Dependent Types, Expression Problem,Defunctionalization, Codata Types

ACM Reference Format:
David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann. 2024. Deriving Dependently-Typed OOP
from First Principles. Proc. ACM Program. Lang. 8, OOPSLA1, Article 129 (April 2024), 27 pages. https://doi.
org/10.1145/3649846

1 INTRODUCTION
There are many programming paradigms, but dependently typed programming languages almost
exclusively follow the functional programming model. In this paper, we show why dependently-
typed programming languages should also include object-oriented principles, and how this can

Authors’ addresses: David Binder, Department of Computer Science, University of Tübingen, Sand 14, Tübingen, 72076,
Germany, david.binder@uni-tuebingen.de; Ingo Skupin, Department of Computer Science, University of Tübingen, Sand
14, Tübingen, 72076, Germany, skupin@informatik.uni-tuebingen.de; Tim Süberkrüb, Aleph Alpha Research at IPAI, Gren-
zhöfer Weg 36, Heidelberg, 69123, Germany, tim.sueberkrueb@aleph-alpha-ip.ai; Klaus Ostermann, Department of Com-
puter Science, University of Tübingen, Sand 14, Tübingen, 72076, Germany, klaus.ostermann@uni-tuebingen.de.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART129
https://doi.org/10.1145/3649846

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

3

Part I: A fresh look on FP vs OOP

4

My Working (Type-Theoretic) Definition of OOP

• Codata Types (Interfaces)

• Subtyping

• Open Recursion

5

I will concentrate on this aspect
Cp. William Cook on Data Abstraction

Booleans: The FP Version (I)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Bool defined as a data type

Observations defined by pattern
matching

6

Booleans: The OOP Version (II)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Bool defined as a codata type

Inhabitants defined by copattern matching
(implementing an interface)

7

Data Codata

Refunctionalization

Defunctionalization

8

aka FP aka OOP

Functions are just a specific instance of a codata type

9

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

10

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Programs as matrices

11

Now with Dependent Types

12

Booleans: The FP Version (II)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Martin-Löf Equality

Proof that negation is involutive

13

Booleans: The OOP Version (II)

14

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Observations with self parameters

Objects come with correctness proofs

15

What we have achieved in the paper

• No builtin types: Non-dependent and dependent function types are user-
defined codata types

• Proof of type soundness

• De-/Refunctionalization is total and type-preserving

• We can de-/refunctionalize types that occur in indizes of type constructors
and which are normalized and compared during type checking

• Restrictions on the beta and eta-equality that we can use during type
checking.

16

Part II: Troubles with Consistency

17

We started with a different title

18

"The Proof Expression Problem"
Reviewers rightfully rejected that title

19

20

21

22

We think we are very close!

23

Extremely powerful refactorings for proof engineers!

Alas, the system is inconsistent :(

24

Inconsistent: Every type is inhabitated.

Three Sources of Inconsistency

• We use the Type-in-Type Axiom

• No checks for positivity of data and codata type declarations

• No termination and productivity checks

25

We could just implement what other proof assistents implement.
But de-/refunctionalized programs would no longer check :(

Problem 1: Universe Hierarchies

26

Universe Hierarchies

• We currently use the Type-in-Type Axiom, which is known to be inconsistent
thanks to Girard.

• We therefore need to introduce some hierarchy of type universes.

• There are unsolved problems with annotating correct universe levels after
defunctionalization.

• Cp. Huang & Yallop 2023: Defunctionalization with Dependent Types

27

Problem 2: Positivity of Type
Declarations

28

29

129:20 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

7.2 Universe Hierarchy
Another reason why our system is inconsistent is that we use one impredicative universe with
the Type-in-Type axiom. This axiom is known to make the theory inconsistent [Hurkens 1995];
on the other hand, it vastly simplifies the presentation and implementation of the theory if we
don’t have to care about universe levels. We want to investigate how de- and refunctionalization
interact with the assignment of type universes to types. This was also identified as a problem by
Huang and Yallop [2023].

7.3 The Variance Problem
Most proof assistants enforce strict positivity in the definition of data types. The strict positivity
restriction says that recursive occurrences of the type that is defined are only allowed at strictly
positive positions, and is required to avoid Curry’s paradox.

The only source of contravariance in most systems is the function type, where arguments are
contravariant. In a system with user-defined codata types many different types are the source of
contravariance, but this is quite simple to specify. The problem is that many useful types from
object-oriented programming require both positive and negative occurrences of the type being
defined. For example, consider the following type7:
codata NatSet { member(x: Nat): Bool, union(x: NatSet): NatSet }

In this example, the NatSet type occurs both positively and negatively in the union destructor.
But this definition is a sensible one; it is not an obscure definition at all. So if we want to enable
the user to work with such definitions we have to replace the strict positivity check by something
more refined. One avenue that we want to explore is guarded type theory (e.g. [Clouston et al.
2017]). Guarded logic was introduced by [Nakano 2000] precisely in order to fix problems with
binary methods in object-oriented programming, and was later developed by other authors into
guarded type theories.

7.4 Strong Behavioural Equality
There is no universally satisfactory definition of equality as the appropriate definition depends on
the object being modeled. For many data types, syntactic equality is sensible. For instance, two
natural numbers 𝑛0,𝑛1 : N are considered judgmentally equal if they are built from the same
constructors, i.e. Z ≡ Z and 𝑛0 ≡ 𝑛1 =⇒ S(𝑛0) ≡ S(𝑛1). However, the situation is very different as
soon as we consider functions 𝑓 ,𝑔 : N→ N. Syntactic equality of the function definitions does not
seem appropriate, because multiple definitions can define the same function. A more reasonable
approach is to regard two functions as equal if they behave identically on all inputs. This principle
is known as functional extensionality:

fun_ext : ∀𝑓 𝑔, (∀𝑥, Eq(N→ N, 𝑓 𝑥,𝑔 𝑥)) =⇒ Eq(N→ N, 𝑓 ,𝑔)

Functional extensionality is the prototypical example of behavioral equality. It is a special case
of bisimilarity: We consider any two objects equal if they behave identically with regard to their
observations. For codata types, we often desire behavioral equalities such as bisimilarity.

In most proof assistants, one can pose those propositional behavioral equalities as axioms. But
this approach does not work in our system. This is because the functional extensionality axiom
is inconsistent for the data representation Fun of functions N → N, which can be seen in the
following example:

7This example was pointed out in the answer by Neel Krishnaswami to the following question on the proof assistants stack
exchange: https://proofassistants.stackexchange.com/questions/372/bringing-oop-features-into-proof-assistants.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Negative Occurrence

But this type can be the result of refunctionalizing an ordinary
Agda or Coq program using only strictly positive data types!

The binary methods problem from the OOP literature

Problem 3: Termination and
Productivity

30

31

Deriving Dependently-Typed OOP from First Principles 129:19

both constructor and codefinition calls and the syntax for consumers for both destructor and defi-
nition calls (see Figure 9). Therefore, in the proposition statements below, de-/refunctionalization
is only applied to the program Θ.

TheoRem 6.3 (De/Refunctionalization pReseRves typing and judgmental eality).
The following implications hold:

• Γ ⊢Θ 𝑒 : 𝑡 =⇒ Γ ⊢XT (Θ) 𝑒 : 𝑡
• Γ ⊢Θ 𝑒1 ≡ 𝑒2 : 𝑡 =⇒ Γ ⊢XT (Θ) 𝑒1 ≡ 𝑒2 : 𝑡
• Γ ⊢Θ 𝜎 : Ξ =⇒ Γ ⊢XT (Θ) 𝜎 : Ξ
• Γ ⊢Θ 𝜎1 ≡ 𝜎2 : Ξ =⇒ Γ ⊢XT (Θ) 𝜎1 ≡ 𝜎2 : Ξ
• ⊢Θ Γ ctx =⇒ ⊢XT (Θ) Γ ctx
• Γ ⊢Θ Ξ tel =⇒ Γ ⊢XT (Θ) Ξ tel

PRoof. Proof outline available in the online appendix and the extended version [Binder et al.
2024b]. !

TheoRem 6.4 (De/Refunctionalization pReseRves well-foRmedness of pRogRams).
If ⊢Θ Θ OK, then ⊢Θ XT (Θ) OK

PRoof. Proof outline available in the online appendix and the extended version [Binder et al.
2024b]. !

7 FUTUREWORK
In this paper, we described a dependently typed programming language based on data and codata.
How to extend this programming language to a proof assistant is one of the problems that we want
to address in the future. In the following sections, we describe the problems that have to be solved
to make our system consistent, in a way that is compatible with the transformations we described.

7.1 Specifying Termination and Productivity
The system we presented does not have any form of termination or productivity checking. We
could, of course, use any of the existing off-the-shelf solutions for checking termination and pro-
ductivity.The problemwith that approach is that, in general, a program that typechecks and is ver-
ified to only have terminating recursive definitions and productive corecursive definitions might
not be verifiably total after de/-refunctionalization. We illustrate this with the following example:

data Nat { S(x: Nat), Z }
def Nat.plus(n: Nat): Nat {

Z => n,
S(x') => S(x'.plus(n)) }

def Nat.mul(n: Nat): Nat {
Z => Z,
S(m) => n.plus(m.mul(n)) }

codata Nat { plus(n: Nat): Nat, mul(n: Nat): Nat }
codef S(x: Nat): Nat {

plus(n) => S(x.plus(n)),
mul(n) => n.plus(x.mul(n)) }

codef Z: Nat {
plus(n) => n,
mul(n) => Z }

We could check termination for the program on the left in the usual way.We check the definition
of plus first and verify that it is only called on the structurally smaller argument m. We then add
plus to the context of functions which are checked to be total. We then check the definition of
mul, having the function plus as a total function in the context. We see again that mul is called on
the structurally smaller argument m.

Refunctionalizing the program on the left results in the program on the right. In this program,
we have to check the productivity of the definitions of Z and S. If we want de/refunctionalization
to be a transformation that maps valid programs to valid programs, then the evidence for the
productivity of Z and S has to be composed of the evidence for the termination of plus and mul.
But it is not at all clear how this can be formally specified at the moment.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

1. Check the type declaration.
2. Check termination of plus.

3. Check termination of mul.
 Assume totality of plus!

There is a clear order in which we check for totality of
function definitions.

32

Deriving Dependently-Typed OOP from First Principles 129:19

both constructor and codefinition calls and the syntax for consumers for both destructor and defi-
nition calls (see Figure 9). Therefore, in the proposition statements below, de-/refunctionalization
is only applied to the program Θ.

TheoRem 6.3 (De/Refunctionalization pReseRves typing and judgmental eality).
The following implications hold:

• Γ ⊢Θ 𝑒 : 𝑡 =⇒ Γ ⊢XT (Θ) 𝑒 : 𝑡
• Γ ⊢Θ 𝑒1 ≡ 𝑒2 : 𝑡 =⇒ Γ ⊢XT (Θ) 𝑒1 ≡ 𝑒2 : 𝑡
• Γ ⊢Θ 𝜎 : Ξ =⇒ Γ ⊢XT (Θ) 𝜎 : Ξ
• Γ ⊢Θ 𝜎1 ≡ 𝜎2 : Ξ =⇒ Γ ⊢XT (Θ) 𝜎1 ≡ 𝜎2 : Ξ
• ⊢Θ Γ ctx =⇒ ⊢XT (Θ) Γ ctx
• Γ ⊢Θ Ξ tel =⇒ Γ ⊢XT (Θ) Ξ tel

PRoof. Proof outline available in the online appendix and the extended version [Binder et al.
2024b]. !

TheoRem 6.4 (De/Refunctionalization pReseRves well-foRmedness of pRogRams).
If ⊢Θ Θ OK, then ⊢Θ XT (Θ) OK

PRoof. Proof outline available in the online appendix and the extended version [Binder et al.
2024b]. !

7 FUTUREWORK
In this paper, we described a dependently typed programming language based on data and codata.
How to extend this programming language to a proof assistant is one of the problems that we want
to address in the future. In the following sections, we describe the problems that have to be solved
to make our system consistent, in a way that is compatible with the transformations we described.

7.1 Specifying Termination and Productivity
The system we presented does not have any form of termination or productivity checking. We
could, of course, use any of the existing off-the-shelf solutions for checking termination and pro-
ductivity.The problemwith that approach is that, in general, a program that typechecks and is ver-
ified to only have terminating recursive definitions and productive corecursive definitions might
not be verifiably total after de/-refunctionalization. We illustrate this with the following example:

data Nat { S(x: Nat), Z }
def Nat.plus(n: Nat): Nat {

Z => n,
S(x') => S(x'.plus(n)) }

def Nat.mul(n: Nat): Nat {
Z => Z,
S(m) => n.plus(m.mul(n)) }

codata Nat { plus(n: Nat): Nat, mul(n: Nat): Nat }
codef S(x: Nat): Nat {

plus(n) => S(x.plus(n)),
mul(n) => n.plus(x.mul(n)) }

codef Z: Nat {
plus(n) => n,
mul(n) => Z }

We could check termination for the program on the left in the usual way.We check the definition
of plus first and verify that it is only called on the structurally smaller argument m. We then add
plus to the context of functions which are checked to be total. We then check the definition of
mul, having the function plus as a total function in the context. We see again that mul is called on
the structurally smaller argument m.

Refunctionalizing the program on the left results in the program on the right. In this program,
we have to check the productivity of the definitions of Z and S. If we want de/refunctionalization
to be a transformation that maps valid programs to valid programs, then the evidence for the
productivity of Z and S has to be composed of the evidence for the termination of plus and mul.
But it is not at all clear how this can be formally specified at the moment.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

How do we declare the dependency of mul on plus if S and Z are
mutually recursive?
We must somehow first construct "partial" objects S and Z for
which only plus is defined.

• polarity-lang.github.io

• Webdemo!

• MIT/Apache Licensed

• Distinguished Artifact @
OOPSLA

Follow the Development

33

http://polarity-lang.github.io

Thanks for your attention!

34

