From FP to OOP and Back,
Consistently

David Binder University of Tubingen

This was not supposed to be a
remote talk :(

This 1s Work In Progress

e Joint work with Ingo Skupin, Tim
Suberkrib and Klaus Ostermann

 Check out my talk on
Wednesday!

e |Let's start with a look at the work
we want to build upon

Deriving Dependently-Typed OOP from First Principles

DAVID BINDER, University of Tiibingen, Germany

INGO SKUPIN, University of Tiibingen, Germany

TIM SUBERKRUB, Aleph Alpha Research at IPAI, Germany
KLAUS OSTERMANN, University of Tiibingen, Germany

The expression problem describes how most types can easily be extended with new ways to produce the type or
new ways to consume the type, but not both. When abstract syntax trees are defined as an algebraic data type,
for example, they can easily be extended with new consumers, such as print or eval, but adding a new con-
structor requires the modification of all existing pattern matches. The expression problem is one way to eluci-
date the difference between functional or data-oriented programs (easily extendable by new consumers) and
object-oriented programs (easily extendable by new producers). This difference between programs which are
extensible by new producers or new consumers also exists for dependently typed programming, but with one
core difference: Dependently-typed programming almost exclusively follows the functional programming
model and not the object-oriented model, which leaves an interesting space in the programming language
landscape unexplored. In this paper, we explore the field of dependently-typed object-oriented programming
by deriving it from first principles using the principle of duality. That is, we do not extend an existing object-
oriented formalism with dependent types in an ad-hoc fashion, but instead start from a familiar data-oriented
language and derive its dual fragment by the systematic use of defunctionalization and refunctionalization.
Our central contribution is a dependently typed calculus which contains two dual language fragments. We
provide type- and semantics-preserving transformations between these two language fragments: defunction-
alization and refunctionalization. We have implemented this language and these transformations and use this
implementation to explain the various ways in which constructions in dependently typed programming can
be explained as special instances of the general phenomenon of duality.

CCS Concepts: » Theory of computation — Type theory; - Software and its engineering — Software
verification; Data types and structures; Classes and objects.

Additional Key Words and Phrases: Dependent Types, Expression Problem, Defunctionalization, Codata Types

ACM Reference Format:

David Binder, Ingo Skupin, Tim Stiberkriib, and Klaus Ostermann. 2024. Deriving Dependently-Typed OOP
from First Principles. Proc. ACM Program. Lang. 8, OOPSLA1, Article 129 (April 2024), 27 pages. https://doi.
0rg/10.1145/3649846

1 INTRODUCTION

There are many programming paradigms, but dependently typed programming languages almost
exclusively follow the functional programming model. In this paper, we show why dependently-
typed programming languages should also include object-oriented principles, and how this can

Authors’ addresses: David Binder, Department of Computer Science, University of Tiibingen, Sand 14, Tibingen, 72076,
Germany, david.binder@uni-tuebingen.de; Ingo Skupin, Department of Computer Science, University of Tiibingen, Sand
14, Tbingen, 72076, Germany, skupin@informatik.uni-tuebingen.de; Tim Stiberkriib, Aleph Alpha Research at IPAI, Gren-
zhofer Weg 36, Heidelberg, 69123, Germany, tim.sueberkrueb@aleph-alpha-ip.ai; Klaus Ostermann, Department of Com-
puter Science, University of Tiibingen, Sand 14, Tiibingen, 72076, Germany, klaus.ostermann@uni-tuebingen.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART129
https://doi.org/10.1145/3649846

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Part I: A fresh look on FP vs OOP

My Working (Type-Theoretic) Definition of OOP

* Codata Types (Interfaces) <« | will concentrate on this aspect
. Subtyping Cp. William Cook on Data Abstraction

 Open Recursion

Booleans: The FP Version (l)

data Bool { True, False } < Bool defined as a data type
def Bool.neg: Bool {

True => False, <«—— (bservations defined by pattern
False => True } matching

Booleans: The OOP Version (ll)

codata Bool { neg: Bool } < Bool defined as a codata type

codef True: Bool { neg => False }
codef False: Bool { neg => True }

T

Inhabitants defined by copattern matching
(implementing an interface)

Refunctionalization

T

Data akaFP Codata aka Q0P

\/

Pefunctionalization
Functions are just a specific instance of a codata type

data Bool { True, False }
def Bool.neg: Bool {
True => False,

False => True %

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True %

Bool True False
neg False True

Programs as matrices

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

10

presentation.pol U X

examples > presentation.pol

1

~N O B W N

data Bool { True, False }
.
def Booh.neg: Bool {

True => False,

False => True

11

Now with Dependent lypes

Booleans: The FP Version (ll)

data Eq(a: Type, x y: a) { Martin-Lof Equality
Refl(a: Type, x: a): Eg(a, x, x) }
data Bool { True, False }
def Bool.neg: Bool {
True => False,
False => True }
def (self: Bool).neg_inverse Proof that negation is involutive
: Eq(Bool, self, self.neg.neg) ¢
True => Refl(Bool, True),

False => Refl(Bool, False) }

13

Booleans: The OOP Version (ll)

data Eg(a: Type, x y: a) {

Refl(a: Type, x: a): Eg(a, x, x) }
codata Bool {

neg: Bool,

(self: Bool).neg_inverse Observations with self parameters
: Eq(Bool, self, self.neg.neg) }

codef True: Bool {
neg => False,

neg_inverse => Refl(Bool, True) } (Qbjects come with correctness proofs
codef False: Bool {
neg => True,

neg_inverse => Refl(Bool, False) }

14

example.pol

1 data Eq(a: Type, x y: a) {

2 Refl(a: Type, x: a) : Eqla, x, Xx)
3 }

4 4ata Bool { True, False }

5

6 def Bool.neg: Bool {

7 True => False,

8 False => True

9 }

10

11 def (self: Bool).neg_eq: Eq(Bool, self, self.neg.neg) {
12 True => Refl(Bool, True),

13 False => Refl(Bool, False)

14 '}

| &

15

What we have achieved in the paper

* No builtin types: Non-dependent and dependent function types are user-
defined codata types

* Proof of type soundness
* De-/Refunctionalization is total and type-preserving

* We can de-/refunctionalize types that occur in indizes of type constructors
and which are normalized and compared during type checking

» Restrictions on the beta and eta-equality that we can use during type
checking.

16

Part Il: Troubles with Consistency

We started with a different title

"The Proof Expression Problem”
Reviewers rightfully rejected that title

-— | Expressions of the object language
data Exp {
-— | Variables using a deBruijn representation
Var(x: Nat),
-— | Lambda abstractions
Lam(body: Exp),
-— | Function applications
App(lhs: Exp, rhs: Exp)

20

-— | Expressions of the object language
codata Exp {
(e: Exp).weaken_cons(ctx: Ctx, t1 t2: Typ)
: HasType(ctx, e, t2) —> HasType(ctx.append(Cons(tl, Nil)), e, t2),
(e: Exp).progress(t: Typ): HasType(Nil, e, t) -> Progress(e),
(el: Exp).preservation(e2: Exp, t: Typ)
: HasType(Nil, el, t) —> Eval(el, e2) —> HasType(Nil, e2, t),
-— | Substituting an expression for a variable 1in an expression.
.subst(v: Nat, by: Exp): Exp,
(e: Exp).subst_lemma(ctxl ctx2: Ctx, t1 t2: Typ, by _e: Exp)
: HasType(ctxl.append(Cons(tl, ctx2)), e, t2) —> HasType(Nil,
by _e,
t1l) —> HasType(ctxl.append(ctx2),
e.subst(ctxl. len,

by_E) B

t2)

21

examples > stlc.pol

. === T e
2 -— Specification —-

3 = S ——

4

5 -— | Expressions of the object language

6 data Exp {

7 -— | Variables using a deBruijn representation
8 Var(x: Nat),

9 -— | Lambda abstractions

10 Lam(body: Exp),

i -— | Function applications

12 App(lhs: Exp, rhs: Exp)

13 }

14

15 -— | Types of the object language

16 data Typ {

17 -— | Function type

18 FunT(t1l t2: Typ),

19 VarT(x: Nat),

20}

21 ¢

22 —— | Typing contexts]

23 -— | Because we use de Bruijn indices the typing context does not contain variable names.
24 data Ctx {

25 -— | The empty context

26 Nil,

27 -— | Adding a typed binding to the context
28 Cons(t: Typ, ts: Ctx),

29 }

30

34 -— | Appending two contexts

32 def Ctx.append(other: Ctx): Ctx {

33 Nil => other,

34 Cons(t, ts) => Cons(t, ts.append(other))
35 }

22

We think we are very close!

Extremely powerful retactorings for proof engineers!

Alas, the system is inconsistent :(

Inconsistent: Every type is inhabitated.

Three Sources of Inconsistency

 We use the Type-in-Type Axiom
 No checks for positivity of data and codata type declarations

* No termination and productivity checks

We could just implement what other proof assistents implement.
But de-/retunctionalized programs would no longer check :(

Problem 1: Universe Hierarchies

Universe Hierarchies

* \We currently use the Type-in-Type Axiom, which is known to be inconsistent
thanks to Girard.

* We therefore need to introduce some hierarchy of type universes.

* There are unsolved problems with annotating correct universe levels after
defunctionalization.

 Cp. Huang & Yallop 2023: Defunctionalization with Dependent Types

27

Problem 2: Positivity of Type
Declarations

codata NatSet { member(x: Nat): Bool, union(x: NatSet): NatSet }

T

Negative Occurrence

But this type can be the result of refunctionalizing an ordinary
Agda or Coq program using only strictly positive data types!

The binary methods problem from the Q0P literature

Problem 3: Termination and
Productivity

data Nat { S(x: Nat), Z } <« 1. Check the type declaration.
def Nat.plus(n: Nat): Nat { <« 2. Check termination of plus.

/[=> n,
S(x'") => S(x'.plus(n)) }

def Nat.mul(n: Nat): Nat { <« 3 Check termination of mul.
7 => Z, Assume totality of plus!

S(m) => n.plus(m.mul(n)) 3}

There is a clear order in which we check for totality of
function definitions.

codata Nat { plus(n: Nat): Nat, mul(n: Nat): Nat }
codef S(x: Nat): Nat {

plus(n) => S(x.plus(n)),

mul(n) => n.plus(x.mul(n)) 3}
codef Z: Nat {

plus(n) =2 n,

mul(n) => Z }

How do we declare the dependency of wul on plus if S and Z are
mutually recursive?

We must somehow first construet "partial” objects S and Z for
which only plus is defined.

32

Follow the Development

e polarity-lang.github.io . ‘

e Webdemo!

 MIT/Apache Licensed

* Distinguished Artifact @
OOPSLA

33

http://polarity-lang.github.io

Thanks for your attention!

