
David Binder, Ingo Skupin, Tim Süberkrüb, Klaus Ostermann University of Tübingen

Deriving Dependently-Typed
OOP from First Principles
OOPSLA '24, Pasadena

 1

My Working (Type-Theoretic) Definition of OOP

• Codata Types (Interfaces)

• Subtyping

• Open Recursion / Late Binding

2

I will concentrate on this aspect
Cp. William Cook on Data Abstraction

Booleans: The FP Version (I)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Bool defined as a data type

Observations defined by pattern
matching

3

Booleans: The OOP Version (II)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Bool defined as a codata type

Inhabitants defined by copattern matching
(implementing an interface)

4

Data Codata

Refunctionalization

Defunctionalization

5

aka FP aka OOP

De-/Refunctionalization as a principled mechanism to derive
symmetric language fragments.

6

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

7

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Programs as matrices

8

Now with Dependent Types

9

Booleans: The FP Version (II)

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Martin-Löf Equality

Proof that negation is involutive

10

Booleans: The OOP Version (II)

11

129:4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(𝑎 :
Type, 𝑥 𝑦 : 𝑎) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Methods with self parameters

Objects come with correctness proofs

12

With Applications to the
Expression Problem

13

14

Proof of type soundness proceeds by induction on Exp
Difficult to extend with new expression nodes

15

Expressions as interface for all theorems that must hold

16

More Examples!

17

Functions are User-Defined

18

Deriving Dependently-Typed OOP from First Principles 7

class spec: PR
public methods:
store: X × A → X
read: X → {error} + A
empty: X → X

assertions:
s.empty.read = error
s.read = error

⊢ s.store(a).read = a
s.read = a

⊢ s.store(b).read = a
creation:
new.read = error

end class spec

(a) Original specification

codata PR {
store(a: A): PR,
read: MaybeA,
empty: PR,
-- | Reading from the empty buffer yields an error
(s: PR).assert_empty: Eq(MaybeA, s.empty.read, Error),
-- | We can store an element into an empty buffer
(s: PR).assert_empty_store(a: A)

: Eq(MaybeA, s.read, Error) -> Eq(MaybeA, s.store(a).read, Just(a)),
-- | We cannot replace the element in the buffer without calling `empty`
(s: PR).assert_persistent(a b: A)

: Eq(MaybeA, s.read, Just(a)) -> Eq(MaybeA, s.store(b).read, Just(a)) }

(b) Implementation in our system.
Fig. 5. Persistent read (PR) specification for one-element buffers from Jacobs [1995].

codata Buffer(m: Nat) {
Buffer(S(n)).read(n: Nat): Pair(Bool, Buffer(n)) }

codef EmptyBuffer: Buffer(Z) { read(n) absurd }
codef Singleton(b: Bool): Buffer(S(Z)) { read(n) => MkPair(Bool, Buffer(Z), b, EmptyBuffer) }

We can see that, as usual for dependent (co)pattern matching, infeasible pattern matches may
arise which need to be marked as absurd. That is, when we implement the buffer interface for the
empty buffer we don’t have to implement the read method since it can never be called.

However, in this work, we go beyond indexed codata types, which admit an intrinsic verification
style. We also want to support the extrinsic approach, where we want to separate our objects from
their specifications. Jacobs [1995] provides us with an initial concept of how to attain that goal. He
proposes a system of coalgebraic specifications that can be used to verify object-oriented classes.
As an example, Figure 5a shows a coalgebraic specification for a one-element buffer that exhibits
persistent read (PR) behavior: After an element has been stored, it cannot be replaced using the
storemethod. Instead, one needs to call the method empty to explicitly empty the buffer. Reading
from the empty buffer returns an error.This specification of the buffer is given as a set of assertions
that reference the buffer state s.

In our system, we can realize this concept using self-parameters on destructors, allowing us
to express specifications as observations on codata types. The codata type in Figure 5 defines the
verified interface for persistent read buffers in our system. Similarly, we can apply this approach
to express verified interfaces such as functors or monads.

2.3 Dependent Functions
Unlike in most other dependent type theories, the Π-type of dependent functions is not part of our
core theory, but can be defined in a library. The Π-type is defined as a codata type indexed over a
type family p, for which we use the ordinary non-dependent function type:
-- | Non-dependent Functions
codata Fun(a b: Type) {

Fun(a, b).ap(a b: Type, x: a): b }
-- | Dependent Functions
codata Π(a: Type, p: a -> Type) {

Π(a, p).dap(a: Type, p: a -> Type, x: a): p.ap(a, Type, x) }

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For

"a -> b" is syntactic sugar for "Fun(a,b)"

Cp. Setzer 2003: Java as a Functional Programming Language

Defined by function application "dap"

Positive and Negative Pairs

19

129:8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For
instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section we showed how to define the Π-type. For the Π-type we had no choice but
to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data or
codata type.This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types are
defined as a codata type with two projections, where the second projection mentions the result of
the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-level inference rules,
cf. Garner [2009].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

129:8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For
instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section we showed how to define the Π-type. For the Π-type we had no choice but
to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data or
codata type.This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types are
defined as a codata type with two projections, where the second projection mentions the result of
the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-level inference rules,
cf. Garner [2009].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 129. Publication date: April 2024.

Defined by pairing constructor Defined by projections
Corresponds to ⊗ in Linear Logic Corresponds to & in Linear Logic

Weak and Strong Sigma Types

20

8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section, we showed how to define the Π-type. For the Π-type we had no choice
but to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data
or codata type. This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types
are defined as a codata type with two projections, where the second projection mentions the result
of the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

But why should we care about these two alternative encodings of the Σ-type? Take, for example,
Eisenberg et al. [2021] who discuss the addition of existential types to Haskell. Since Haskell both
is lazy and supports type erasure, Eisenberg et al. are driven to a design that uses strong existential
types. We think that by using the framework of data and codata types we can make these kind of
differences even clearer.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-order inference rules,
cf. Garner [2009].

8 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section, we showed how to define the Π-type. For the Π-type we had no choice
but to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data
or codata type. This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types
are defined as a codata type with two projections, where the second projection mentions the result
of the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family 𝑇 . As a data type, it is defined by
one constructor Pair which takes the type family𝑇 , an element 𝑥 of type𝐴 and a witness𝑤 as ar-
guments. As a codata type, we still have two projections 𝜋1 and 𝜋2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
𝑇 applied to self .𝜋1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x))

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

But why should we care about these two alternative encodings of the Σ-type? Take, for example,
Eisenberg et al. [2021] who discuss the addition of existential types to Haskell. Since Haskell both
is lazy and supports type erasure, Eisenberg et al. are driven to a design that uses strong existential
types. We think that by using the framework of data and codata types we can make these kind of
differences even clearer.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-order inference rules,
cf. Garner [2009].

Linked by De-/Refunctionalization

What we have achieved in the paper

• Dependent type theory with no builtin types: 
Non-dependent and dependent function types are user-defined codata types

• Proof of type soundness (Extended version @ ArXiV)

• De-/Refunctionalization is total and type-preserving

• We can de-/refunctionalize types that occur in indizes of type constructors
and which are normalized and compared during type checking

• Various examples: Strong vs. weak Σ-types, codata encodings of natural
numbers, dependently-typed programming examples

21

What we have *not* achieved in the paper

• System is sound, but not consistent

• We use the Type : Type axiom

• We don't check for (strict) positivity of recursive (co-)data declarations

• We don't check for termination or productivity

• Eta-equalities not valid for typechecking

• Some restrictions on judgemental equality

22

Difficult to preserve these properties under de-/refunctionalization

• polarity-lang.github.io/oopsla24/

• Implemented in Rust

• LSP Server and VSCode
Extension

• All examples run in the browser!

• Actively hacked on :)

Implementation

23

http://polarity-lang.github.io/oopsla24

Please like & subscribe:
polarity-lang.github.io

24

