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What codata types 
can you think of?
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This Talk: 
Codata Types are Types 
Defined by Observations
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Codata Types: Five Sketches
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Sketch 1
Codata for Infinite Data

Copatterns
Programming Infinite Structures by Observations
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Abstract
Inductive datatypes provide mechanisms to define finite data such
as finite lists and trees via constructors and allow programmers
to analyze and manipulate finite data via pattern matching. In
this paper, we develop a dual approach for working with infinite
data structures such as streams. Infinite data inhabits coinductive
datatypes which denote greatest fixpoints. Unlike finite data which
is defined by constructors we define infinite data by observations.
Dual to pattern matching, a tool for analyzing finite data, we de-
velop the concept of copattern matching, which allows us to syn-
thesize infinite data. This leads to a symmetric language design
where pattern matching on finite and infinite data can be mixed.

We present a core language for programming with infinite struc-
tures by observations together with its operational semantics based
on (co)pattern matching and describe coverage of copatterns. Our
language naturally supports both call-by-name and call-by-value
interpretations and can be seamlessly integrated into existing lan-
guages like Haskell and ML. We prove type soundness for our lan-
guage and sketch how copatterns open new directions for solving
problems in the interaction of coinductive and dependent types.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures, Patterns, Recursion; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Program and recursion
schemes, Type structure

General Terms Languages, Theory

Keywords Coinduction, Functional programming, Introduction
vs. elimination, Message passing, Pattern matching
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1. Introduction
Representing and reasoning about infinite computation plays a cru-
cial role in our quest for designing and implementing safe soft-
ware systems, since we often want to establish behavioral proper-
ties about our programs, reason about I/O interaction and processes,
and establish liveness properties that eventually something good
will happen. While finite structures such as natural numbers or fi-
nite lists are modelled by inductive types, infinite structures such
as streams or processes are elegantly characterized by coinductive
types. Inductive types are now very well understood and supported
by functional languages and proof assistants, whereas the theoreti-
cal foundations and practical tools for coinductive types lag behind.

For example, in the Calculus of (Co)Inductive Constructions,
the core theory underlying Coq [INRIA 2010], coinduction is bro-
ken, since computation does not preserve types [Giménez 1996;
Oury 2008]. In Agda [2012], a dependently typed proof and pro-
gramming environment based on Martin Löf type theory, inductive
and coinductive types cannot be mixed in a compositional way. For
instance, one can encode the property “infinitely often” from tem-
poral logic, but not its dual “eventually forever” [Altenkirch and
Danielsson 2010].

Over the past decade there has been growing consensus [Set-
zer 2012; McBride 2009; Granström 2009] that one should distin-
guish between finite, inductive data defined by constructors and in-
finite, coinductive data which is better described by observations.
This view was pioneered by Hagino [1987] who modeled finite ob-
jects via initial algebras and infinite objects via final coalgebras
in category theory. His development culminated in the design of
symML, a version of ML where one can declare codatatypes via a
list of their destructors [Hagino 1989]. For example, the codatatype
of streams is defined via the destructors head and tail which de-
scribe the observations we can make about streams. Cockett and
Fukushima [1992] took up his work and designed a language Char-
ity where one programs directly with the morphisms of category
theory. But while Charity was later extended with pattern match-
ing on (initial) data types [Tuckey 1997], no corresponding dual
concept was developed for codatatypes (called final data types in
Charity).

In this paper, we take a first step towards building a type-
theoretic foundation for programming with infinite structures via
observations. Dual to pattern matching for analyzing finite data,
we introduce copattern matching for manipulating infinite data and
describe coverage for copatterns. In order to focus on the main
concepts and avoid the additional complexities that come with
dependent types, for instance, the need to guarantee termination
or productivity, we confine ourselves to simple types in this article.

Copatterns: Programming Infinite Structures by Observations 
(Abel, Pientka, Thibodeau, Setzer)
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Codata for Infinite Data
The codata type Stream

• CoInductive Stream(A : Set) : Set := Cons : A -> Stream A -> Stream A.


• This way of defining coinductive types is not well-behaved.


• Use the following codata type instead:

codata Stream(a) { hd : a, tl : Stream(a) }
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Sketch 2
Codata for Functions 

280 Anton Setzer

passing a method with an appropriate signature to them – then applying the
delegate is the same as applying that method to the arguments (this might
have side-effects). Additionally multicast delegates are considered, which are
essentially lists of delegates of the same type.

Hejlsberg claims that delegates form a more elegant concept for handling
events. When designing a graphical user interface, one usually associates with
certain widgets event handlers. If for instance the mouse is clicked on the widget,
an event handler associated with that event is called. It is applied to the parame-
ters of that event encoded as an object of an event-class (e.g. MouseEvent). From
the event object one can retrieve parameters of the event such as the coordinates
of the mouse click. The result will be void, e.g. no result is returned and only the
side-effects are relevant. Therefore, the event handler is a function Event→ void,
which could be modelled as a delegate.

Gosling’s answer to the suggestion by Hejlsberg was essentially that they
are not needed, since we already have them in Java. Higher order functions and
therefore delegates can be encoded directly in Java using inner classes. This is
the underlying idea for event handling in Java, and in this article we will explore
the encoding of higher order functions as classes in a systematic way.

Overview. In Sect. 2 we will introduce a very direct encoding of higher types
and of lambda terms into Java. This will be done in such a way that it is easy,
although sometimes tedious, to write complicated lambda terms by hand. It will
become clear that function types are already available in Java and normalization
is carried out by the builtin reduction machinery of Java (cf. normalization by
evaluation [BS91]). However, when introducing λ-terms, one would like to have
some support by suitable syntactic sugar. In Sect.3 we will show that the calculus
we obtain is call-by-value λ-calculus. In Sect. 4 we look at some applications: We
encode the untyped lambda calculus into Java, which is just one example of how
to solve domain theoretic equations, introduce a generic version of the arrow-
type, consider, how explicit overriding and method updating can be treated
using the encoding of the λ-calculus, and define a foreach loop for collections
having iterators. In Sect. 5 we explore how to encode algebraic types by defining
elements by their elimination rules. In Sect. 6 we look at, in which sense this
approach would benefit from the extension of Java by templates and how to
introduce abbreviations for functional constructs in Java. In Sect. 7 we compare
our approach with related ones in Java, C++, Perl and Python.

2 Higher Types in Java

By a Java type – we will briefly say type for this – we mean any expression
〈typeexpr〉, which can be used in declaring variables of the form 〈typeexpr〉 f or
〈typeexpr〉 f = · · ·. So the primitive types boolean, char, byte, short, int, long, float,
double and the reference types arrays, classes and interfaces are types. Note that
void is not a type.

A class can be seen as a bundle of functions, which have state. Therefore,
the type of functions is nothing but a class with only one method, which we call

Java as a Functional Programming Language 281

ap. Applying the function means to execute the method ap. Therefore, if A and
B are Java types, we define the type of functions from A to B, A→ B, as the
following interface (we use the valid Java identifier A B instead of A→ B):

interface A B{B ap(A x); };

If f is of type A→ B, and a is of type A, then f.ap(a) is the result of applying f
to a, for which one might introduce the abbreviation f(a).

It is convenient, to introduce the type of functions with several arguments:
(A1, . . . ,An)→ B is the set of functions with arguments of type A1, . . . ,An and
result in B. Using the valid Java identifier CA1cdotsAnD B, where C and D are
used as a substitute for brackets, and stands for →, it is defined as

interface CA1cdotsAnD B{B ap(A1 x1, . . . ,An xn); };

To improve readability, we will in the following use expressions like
(A1, . . . ,An)→ B, as if they were valid Java identifiers.

The application of f to a1, . . . , an is f.ap(a1, . . . , an). A special case is the
function type (()→ A), defined as interface (()→ A) {A ap(); };.

In order to define λ-abstraction, we make use of inner classes. We start with
two examples and then consider the general situation. The function λx.x2 of
type int→ int can be defined as

class lamxxsquare implements (int→ int){
public int ap(int x){return x ∗ x; }; };

(int→ int) lamxxsquare = new lamxxsquare();

Anonymous classes provide shorthand for this:

(int→ int) lamxxsquare = new (int→ int)(){
public int ap(int x){return x ∗ x; }; };

When defining higher type functions, we need to pass parameters to nested inner
classes. An inner class has access to instance variables and methods of classes, in
the scope of which it is, but only to final local variables and parameters of meth-
ods. So, in order to make use of bound variables in λ-terms, we need to declare
them final. Parameters can be declared final when introducing them. As an ex-
ample, we introduce the λ-term λf.λx.f(x+1) of type (int→ int)→ (int→ int).
Depending on the parameter f we introduce λx.f(x + 1), which is introduced by
an inner class. The code reads as follows:

public ((int→ int)→ (int→ int)) lamflamxfxplusone
= new ((int→ int)→ (int→ int)) (){

public (int→ int) ap (final (int→ int) f){
return new (int→ int) (){

public int ap(final int x){return f.ap(x + 1); }; }; }; };

We introduce in a position, where an expression of type (A1, . . . ,An)→ A is
required, λ(A1 a1, . . . ,An an)→ {〈code〉}; (a corresponding Java syntax would

Java as a Functional Programming Language (A. Setzer)
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Codata for Functions
The codata type Fun

• Functional languages usually don't allow to define the function type.


• Codata types are more general than function types.


• Use the following codata type instead:

codata Fun(a,b) { ap(x : a) : b }

9



Sketch 3
Codata for Non-Strict Types

P. Downen and Z. M. Ariola 20:3

Functions are a co-data type [7], so the extensionality law for functions, known as ÷,
expands function terms into trivial ⁄-abstractions as follows:

(÷æ) M : A æ B = ⁄x.M x (x /œ FV (M))

But once we allow for any computational e�ects in the language, this law only makes sense
with respect to call-by-name evaluation. For example, suppose that we have a non-terminating
term � (perhaps caused by general recursion) which never returns a value. Then the ÷æ
law stipulates that � = ⁄x.� x. This equality is fine—it does not change the observable
behavior of any program—in call-by-name, but in call-by-value, (⁄z.5) � loops forever and
(⁄z.5) (⁄x.� x) returns 5. So the full ÷æ breaks in call-by-value.

In contrast, sums are a data type, so one sensible extensionality law for sums, which
corresponds to reasoning by induction on the possible cases of a free variable, is expressed by
the following law stating that if x has type A ü B then it does no harm to case on x first:

(÷ü) M = case x of{ÿ1y.M [ÿ1y/x] | ÿ2z.M [ÿ2z/x]} (x : A ü B)

Unfortunately, this law only makes sense with respect to call-by-value evaluation once we have
e�ects. For example, consider the instance where M is ÿ1x. In call-by-value, variables stand
for values which are already evaluated because that is all that they might be substituted for.
So in either case, when we plug in something like ÿi5 for x, we get the result ÿ1(ÿi5) after
evaluating the right-hand side. But in call-by-name, variables range over all terms which
might induce arbitrary computation. If we substitute � for x, then the left-hand side results
in ÿ1� but the right-hand side forces evaluation of � with a case, and loops forever.

How can we resolve this conflict, where one language feature “wants” call-by-name
evaluation and the other “wants” call-by-value? We just could pick one or the other as the
default of the language, to the detriment of either functions or sums. Or instead we could
integrate the two to get the best of both worlds, and polarize the language so that functions
are evaluated according to call-by-name, and sums according to call-by-value. That way,
both of them have their best properties in the same language, even when e�ects come into
play. Since functions and sums are already distinguished by types, we can leverage the type
system to make the call-by-value and -name distinction for us. That is to say, a type A might
classify either a call-by-value term, denoted by A+, or a call-by-name term, denoted by A≠.
Put it all together, we get the following polarized typing rules for our basic ⁄-calculus:

A, B, C ::= A+ | A≠ A≠, B≠ ::= X
≠ | A+ æ B≠ A+, B+ ::= X

+ | A+ ü B+

�, x : A „ x : A
Var

�, x : A+ „ M : B≠

� „ ⁄x.M : A+ æ B≠
æI

� „ M : A+ æ B≠ � „ N : A+

� „ M N : B≠
æE

� „ M : A+

� „ ÿ1M : A+ ü B+
üI1

� „ M : B+

� „ ÿ2M : A+ ü B+
üI2

� „ M : A+ ü B+ �, x : A+ „ N : C �, y : B+ „ P : C

� „ case M of{ÿ1x.N | ÿ2y.P } : C
üE

Note that, with this polarization, injections are treated as call-by-value, in ÿiM the term M

is evaluated before the tagged value is returned. More interestingly, the function call M N

has two parts: the argument N is evaluated before the function is called as in call-by-value,
but this only happens once the result is demanded as in call-by-name.

But there’s a problem, just dividing up the language into two has severely restricted
the ways we can compose types and terms. We can no longer inject a function into a sum,
because a function is negative but a sum can only contain positive parts. Even more extreme,
the identity function ⁄x.x : A æ A no longer makes sense: the input must be a positive
type and the output a negative type, and A cannot be both positive and negative at once.
To get around this restriction, we need the ability to shift polarity between positive and

CSL 2018

Beyond Polarity: Towards a Multi-Discipline Intermediate 
Language With Sharing (Downen, Ariola)
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Codata for Non-Strict Types
The codata type LPair

• -Laws for codata types are only valid under call-by-name


• -Laws for data types are only valid under call-by-value


• Haskell's encoding of lazy pairs is therefore wrong; use the 
following codata type instead:

η

η

codata LPair(a,b) { fst: a, snd: b }
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Sketch 4
Codata for Modalities

Menu (price 17 Euros)

Quiche or Salad
Chicken or Fish

Banana or “Surprise du Chef∗”

(*) either “Profiteroles” or “Tarte Tatin”

17E !























(Q&S)
⊗

(C&F )
⊗

(B&(P ⊕ T ))

We can recognize here some of the meanings that we already discussed. The right of the sequent is
what you can get for 17 Euros. The tensor tells that for this price you get one “entrée”, one dish
and one dessert. The difference between & and ⊕ is a bit more subtle, and the game interpretation
is helpful here. So let us start again from the beginning, considering a play between the restaurant
manager (the Player) and the customer (the Opponent). It is the Player’s responsibility to split the
17E into three parts, corresponding to the cost of the three parts of the meal. May be, this is done
as follows:

5E ! Q&S 8E ! C&F 4E ! B&(P ⊕ T )

17E ! (Q&S)⊗ (C&F )⊗ (B&(P ⊕ T ))

Now let the Opponent challenge 5E ! Q&S:

5E ! Q 5E ! S

5E ! Q&S

which reads as: both Quiche and Salad are available to the customer, but he can get only one, and it is
his choice of picking one of the antecedents and to order, say, a Quiche. Thus the additive conjunction
can be understood as a ... disjunction embodying a notion of external choice (remember that in our
example the customer is the Opponent, or the context, or the environment). Let us now analyse a
proof of 4E ! B&(P ⊕ T ):

4E ! B

4E ! T

4E ! P ⊕ T

4E ! B&(P ⊕ T )

Suppose that the Opponent chooses the Surprise. Then it is the Player’s turn, who justifies 4E ! P⊕T
using the right ⊕ rule. So, the Opponent will get a Tarte Tatin, but the choice was in the Player’s
hands. Thus ⊕ has an associated meaning of internal choice. In summary, two forms of choice,
external and internal, are modelled by & and ⊕, respectively. In the case of ⊕, whether A or B is
chosen is controlled by the rule, that is, by the Player. In the case of &, the choice between A or B
is a choice of one of the antecedents of the rule, and is in the hands of the Opponent.

Actually, our image becomes even more acurate if we replace the customer with an inspector (in
summer, many restaurants propose unreasonable prices to the tourists...). The inspector will not
consume the whole menu, he will just check (his choice!) whether what is offered, say for the entrée, is
correct (not over-priced, fresh enough...). Another inspector, or the same inspector, may want to do
another experiment later, checking this time on dessert: using this sharper personification, the game
as explained above is more fully reflected.

All these oppositions confirm a fundamental polarity: by convention, we shall term & and ! as
negative, and ⊗ and ⊕ as positive.

8

Introduction to Linear Logic and Ludics, Part I (Pierre-Louis Curien)
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Codata for Modalities
The data type Tensor and the codata type With

• In linear logic there are two types of logical "and": Tensor  and With &


• In order to use  you have to use both A and B exactly once.


• In order to use  you have to use A once or use B once.

⊗

A ⊗ B

A & B

13

codata With(a,b) { fst: a, snd: b }
data Tensor(a,b) { Tup(a,b) }



Sketch 5
Codata for Extensibility

Automatic Refunctionalization

to a Language with Copattern Matching

With Applications to the Expression Problem

Tillmann Rendel Julia Trieflinger Klaus Ostermann
University of Tübingen, Germany

Abstract

Defunctionalization and refunctionalization establish a correspon-
dence between first-class functions and pattern matching, but the
correspondence is not symmetric: Not all uses of pattern match-
ing can be automatically refunctionalized to uses of higher-order
functions. To remedy this asymmetry, we generalize from first-class
functions to arbitrary codata. This leads us to full defunctionaliza-
tion and refunctionalization between a codata language based on
copattern matching and a data language based on pattern matching.

We observe how programs can be written as matrices so that
they are modularly extensible in one dimension but not the other.
In this representation, defunctionalization and refunctionalization
correspond to matrix transposition which effectively changes the
dimension of extensibility a program supports. This suggests appli-
cations to the expression problem.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Defunctionalization, Refunctionalization, Codata, Co-
pattern Matching, Uroboro, Expression Problem

1. Introduction

Defunctionalization transforms programs with higher-order func-
tions into first-order programs with pattern matching (Reynolds
1972; Danvy and Nielsen 2001). Specifically, each function type
is replaced by an algebraic data type with one variant for each lo-
cation in the program where a function of that type is created. The
components of each variant represent the values of the free vari-
ables in the function body. Application of a function of that type is
replaced by a call to an apply function, which dispatches by pattern
matching on the algebraic data type. For instance, the program

mult n y = y ⇤ n
add n y = y + n

both (f , (a, b)) = (f a, f b)
example (n, x ) = both (mult n, both (add n, x ))

looks as follows after defunctionalization:

data IntToInt = Mult Int | Add Int
apply (Mult n, y) = y ⇤ n
apply (Add n, y) = y + n

both (f , (a, b)) = (apply (f , a), apply (f , b))
example (n, x ) = both (Mult n, both (Add n, x ))

Refunctionalization is the left-inverse of defunctionalization
(Danvy and Millikin 2009). It works on programs that are in the
image of defunctionalization, that is, there must only be one func-
tion that pattern-matches on the algebraic data type. In that case, we
can replace calls to apply by function application and constructor
applications by abstractions based on the apply function and then
remove the algebraic data type and the apply function. Hence we
are back at the original program.

Unfortunately, refunctionalization no longer works when more
than one function pattern-matches on the algebraic data type. For
instance, in the defunctionalized version of the program, we can
find out whether a function from Int to Int is the addition function:

isAdd (Add ) = True
isAdd (Mult ) = False

This program can no longer be refunctionalized, because there is
no way to analyze a function beyond applying it to a value.

The goal of this paper is to remedy this asymmetry between de-
functionalization and refunctionalization. Our main insight is that
symmetry can be restored by generalizing first-class functions to
codata, that is, objects defined by multiple observations (whereas
functions are objects defined by just one observation, namely func-
tion application). The contributions of this paper are as follows:
• We present Uroboro, a language with pattern and copattern

matching (following Abel et al. 2013), and the defunctionaliza-
tion and refunctionalization between its data and codata frag-
ments (Section 2).

• We formalize the data and codata fragments and show that
the total and inverse defunctionalization and refunctionalization
preserve typing and behavior (Section 3).

• We observe that the two transformations can be considered a
form of matrix transposition (Section 4).

• We relate to the expression problem (Wadler 1998; Reynolds
1975; Cook 1990) by showing that the transformations switch
the dimension of extensibility of the program.

Section 5 contains an extension of Reynolds’s (1972) original ex-
ample to demonstrate the utility of defunctionalization and unre-
stricted refunctionalization. We discuss our results and their rela-
tion to previous work in Section 6 and conclude in Section 7.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...
http://dx.doi.org/10.1145/2784731.2784763

269

Automatic Refunctionalization to a Language with 
Copattern Matching: With Applications to the Expression 
Problem (Rendel, Trieflinger, Ostermann)
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Codata for Extensibility
The codata type Exp

• Data types are easily extendable by new consumers which pattern match.


• It is hard to extend data types with new producers / constructors.


• Codata types are easily extendable by new producers which copattern match.


• It is hard to extend codata types with new observations / destructors.

codata Exp { print : String, eval : Int }

15

data Exp { Lit(Int), Add(Exp,Exp) }



Why I Care About Codata Types
Five sketches of an elephant

• Sketch 1: Codata for Infinite Data (codata Stream)


• Sketch 2: Codata for Functions (codata Fun)


• Sketch 3: Codata for Non-Strict Types (codata LPair)


• Sketch 4: Codata for Modalities (data Tensor vs codata With)


• Sketch 5: Codata for Extensibility (codata Exp)

16

Also dependent functions

Also shift types

Also ⊕,⅋, ! and ? 



Dependent (Co)Data Types
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Online demo: polarity-lang.github.io/oopsla24
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The expression problem describes howmost types can easily be extended with newways to produce the type or
new ways to consume the type, but not both. When abstract syntax trees are defined as an algebraic data type,
for example, they can easily be extended with new consumers, such as print or eval, but adding a new con-
structor requires the modification of all existing pattern matches. The expression problem is one way to eluci-
date the difference between functional or data-oriented programs (easily extendable by new consumers) and
object-oriented programs (easily extendable by new producers). This difference between programs which are
extensible by new producers or new consumers also exists for dependently typed programming, but with one
core difference: Dependently-typed programming almost exclusively follows the functional programming
model and not the object-oriented model, which leaves an interesting space in the programming language
landscape unexplored. In this paper, we explore the field of dependently-typed object-oriented programming
by deriving it from first principles using the principle of duality. That is, we do not extend an existing object-
oriented formalism with dependent types in an ad-hoc fashion, but instead start from a familiar data-oriented
language and derive its dual fragment by the systematic use of defunctionalization and refunctionalization.
Our central contribution is a dependently typed calculus which contains two dual language fragments. We
provide type- and semantics-preserving transformations between these two language fragments: defunction-
alization and refunctionalization. We have implemented this language and these transformations and use this
implementation to explain the various ways in which constructions in dependently typed programming can
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Abstract

We develop a dependent type theory that is based purely on in-
ductive and coinductive types, and the corresponding recursion and
corecursion principles. This results in a type theory with a small
set of rules, while still being fairly expressive. For example, all
well-known basic types and type formers that are needed for us-
ing this type theory as a logic are definable: propositional con-
nectives, like falsity, conjunction, disjunction, and function space,
dependent function space, existential quantification, equality, natu-
ral numbers, vectors etc. The reduction relation on terms consists
solely of a rule for recursion and a rule for corecursion. The reduc-
tion relations for well-known types arise from that. To further sup-
port the introduction of this new type theory, we also prove funda-
mental properties of its term calculus. Most importantly, we prove
subject reduction and strong normalisation of the reduction rela-
tion, which gives computational meaning to the terms.

The presented type theory is based on ideas from categorical
logic that have been investigated before by the first author, and
it extends Hagino’s categorical data types to a dependently typed
setting. By basing the type theory on concepts from category theory
we maintain the duality between inductive and coinductive types,
and it allows us to describe, for example, the function space as a
coinductive type.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

Keywords Dependent Types, Inductive Types, Coinductive Types,
Fibrations

1. Introduction

In this paper, we develop a type theory that is based solely on de-
pendent inductive and coinductive types. By this we mean that the
only way to form new types is by specifying the type of their cor-
responding constructors or destructors, respectively. From such a
specification, we get the corresponding recursion and corecursion
principles. One might be tempted to think that such a theory is
relatively weak as, for example, there is no function space type.
However, as it turns out, the function space is definable as a coin-
ductive type. Other type formers, like the existential quantifier, that

[Copyright notice will appear here once ’preprint’ option is removed.]

are needed in logic, are definable as well. Thus, the type theory we
present in this paper encompasses intuitionistic predicate logic.

Why do we need another type theory, especially since Martin-
Löf type theory (MLTT) (Martin-Löf 1975) or the calculus of in-
ductive constructions (CoIC) (Paulin-Mohring 1993; Werner 1994;
Bertot and Castéran 2004) are well-studied frameworks for intu-
itionistic logic? The main reason is that the existing type theories
have no explicit dependent coinductive types. Giménez (Giménez
1995) discusses an extension of the CoIC with coinductive types
and guarded recursive schemes but proves no properties about the
conversion relation. On the other hand, Sacchini (Sacchini 2013)
extended the CoC with streams, and proves subject reduction and
strong normalisation. However, the problem of limited support for
general coinductive types remains. Finally, we should also mention
that general coinductive types are available in implementations like
Coq (Coq Development Team 2012), which is based on (Giménez
1995), Agda (Agda 2015) and Nuprl (Constable 1997). Yet, none
of these has a formal justification, and Coq’s coinductive types are
even known to have problems (e.g. related to subject reduction).

One might argue that dependent coinductive types can be en-
coded through inductive types, see (Ahrens et al. 2015; Basold
2015). However, it is not clear whether such an encoding gives rise
to a good computation principle in an intensional type theory such
as MLTT or CoIC, see (cLab 2016). This becomes an issue once
we try to prove propositions about terms of coinductive type.

Other reasons for considering a new type theory are of foun-
dational interest. First, taking inductive and coinductive types as
core of the type theory reduces the number of deduction rules con-
siderably compared to, for example, MLTT with W- and M-types.
Second, it is an interesting fact that the (dependent) function space
can be described as a coinductive type. This is well-known in cat-
egory theory but we do not know of any treatment of this fact in
type theories. Thus the presented type theory allows us to deepen
our understanding of coinductive types.

Contributions Having discussed the raison d’être of this paper,
let us briefly mention the technical contributions. First of all, we
introduce the type theory and show how important logical operators
can be represented in it. We also discuss some other basic examples,
including one that shows the difference to existing theories with
coinductive types. Second, we show that computations of terms,
given in form of a reduction relation, are meaningful, in the sense
that the reduction relation preserves types (subject reduction) and
that all computations are terminating (strong normalisation). Thus,
under the propositions-as-types interpretation, our type theory can
serve as formal framework for intuitionistic reasoning.

Related Work A major source of inspiration for the setup of our
type theory is categorical logic. Especially, the use of fibrations,
brought forward in (Jacobs 1999), helped a great deal in under-
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calculus that can serve as the foundation for object-oriented dependently-typed programming lan-
guages. Instead of specifying this calculus in an ad-hoc fashion, we want to use de- and refunction-
alization as systematic tools to derive an object-oriented language fragment from its functional
counterpart. We want to show how object-oriented programming is dual to functional program-
ming, that this duality extends from non-dependent programming languages to dependently typed
programming languages, and that we can use this duality to derive our calculus.

1.1 Data and Codata: The Essence of Functional and Object-Oriented Programming
How can functional programming (FP) and object-oriented programming (OOP) be dual, if there is
no precise definition of these two paradigms? We have to define what we mean by functional and
object-oriented programming if wewant to get a precise research question. For the purposes of this
paper, and other reasonable definitions notwithstanding, we focus on the differences in program
decomposition between the two paradigms.1 For us, the essence of functional programming is pro-
gramming with algebraic data types and pattern matching, whereas the essence of object-oriented
programming is programming against interfaces, which correspond to the type-theoretic concept
of codata and copattern matching. This definition is not novel but follows similar observations by
Cook [1990, 2009] and Downen et al. [2019]. A potentially confusing but important aspect of this
definition is that first-class functions are in the object-oriented space, since they are a particular
form of codata (and ! is a particular form of copattern matching). In the rest of this subsection, we
elaborate on this definition.

Let us verify first that this definition captures the essence of FP. An essential part of the pro-
gramming experience in statically typed functional languages like OCaml, Scala, Haskell or SML,
but also proof assistants like Coq, Agda, Idris and Lean, is modeling the domain with algebraic data
types. Algebraic data types consist of product types like structs and records, sum types and enums,
and recursive types like lists, which together form the essential vocabulary with which program-
mers in those languages express themselves. The dependently typed languages in this list extend
this vocabulary by allowing data types to be indexed; the vector type, for example, is indexed over
the number of its elements.

That OOP can be identified with codata types is less obvious, so we will introduce them with a
bit more detail. Data types and codata types differ in how they are defined: Whereas a data type
is defined by its constructors, i.e. all the ways in which terms of that type can be constructed, a
codata type is defined by all the ways it can be observed. One type which is defined by its two
canonical observations is the type of infinite streams. We can either observe the head of a stream,
yielding one element, or we can observe the tail, yielding a new stream. Equivalently, we can say
that every stream has to implement the stream interface which requires a head and a tail method.
Instead of this object-oriented terminology, we use the type-theoretic jargon and the following
syntax for defining the type of streams:

codata Stream(a: Type) {
Stream(a).head(a: Type): a,
Stream(a).tail(a: Type): Stream(a) }

codef Ones: Stream(Nat) {
head(_) => S(Z),
tail(_) => Ones }

The right-hand side shows how to construct a stream by implementing the stream interface, i.e. by
saying how it will behave on the head and the tail observation. This particular stream models an
infinite sequence of ones. The syntactic construct we use here is called copattern matching [Abel
et al. 2013] and is the precise dual of pattern matching.

1Such a definition necessarily reduces the differences between the two paradigms to only one aspect, but this reduction is
hopefully also illuminating. Focusing on another difference, and, for example, analyzing how subtyping can influence the
design of dependently typed programming language would be another interesting research question.

Copattern Matching!



Booleans

23

Deriving Dependently-Typed OOP from First Principles 3

We mentioned that according to our definition of FP and OOP, first-class functions counter-
intuitively belong to the object-oriented space, so let us substantiate that claim. Programmers in
functional programming languages can definemany types, but they usually cannot define the func-
tion type. Functions can be defined, however, using codata types: A function is just an object which
implements an interface with one apply method. For example, functions from natural numbers to
Booleans, and the constant function which always returns true are defined in the following way:

codata Fun { ap(x: Nat): Bool } codef ConstTrue: Fun { ap(_) => True }

The research question that motivated this paper is this: If functional programming can be and
has been extended to dependent functional programming, can object-oriented programming be
similarly extended? Codata has been introduced tomany proof assistants before, but for an entirely
different purpose.The purpose was tomodel certain infinite structures and coinductive objects, not
to program in an object-oriented style. In this paper, we are interested in this second aspect, and
we are (to the best of our knowledge) the first ones to discuss this question in detail. To approach
this question in a principled way, we need an additional technical tool, defunctionalization and
refunctionalization, which we introduce in the next section.

1.2 De- and Refunctionalization: A Tool for Systematic Language Design
Now that we have introduced two alternative programming paradigms, let us look at how one
paradigm can express programs in the other paradigm. One way in which object-oriented pro-
grammers have often represented the functional style is with the visitor pattern [Gamma et al.
1995]. Later, Downen et al. [2019] showed how the visitor pattern can be used as a compilation
technique for data and codata types; using the visitor pattern, they can compile functional pro-
grams to object-oriented programs, and using a related tabulation technique they can compile
object-oriented programs to functional ones. In this paper, we use an alternative technique: de-
functionalization and refunctionalization.

Defunctionalization [Danvy and Nielsen 2001; Reynolds 1972] is a whole-program transforma-
tion which eliminates higher-order functions by replacing lambda abstractions by constructors
of a data type, together with a top-level apply function. Refunctionalization [Danvy and Millikin
2009] is its partial inverse, and re-introduces higher-order functions by replacing occurrences of
the constructors by lambda abstractions. We already observed in the previous section that the
function type is just one instance of a codata type. Based on this observation, Rendel et al. [2015]
showed that defunctionalization and refunctionalization can be generalized to arbitrary data and
codata types, which makes these transformations both more powerful and more symmetric since
refunctionalization is now a full inverse instead of a partial one.

Let us look at an example of how these generalized defunctionalization and refunctionalization
transformations work. In Figure 1a we have defined Booleans as a data type with two construc-
tors, and negation by pattern matching on True and False. For negation we use syntax familiar
to object-oriented programmers: negating a boolean ! can be written as ! .neg. Refunctionalizing
this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(! :
Type, " # : !) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

In the object-oriented decomposition, shown in Figure 2b, we have kept the definition of the
Martin-Löf equality type. The definition of Booleans, on the other hand, has changed dramatically.
Booleans are now defined via the two observations that we defined in the original program: nega-
tion and the proof that negating a boolean twice is the identity. Instead of two canonical construc-
tors True and Falsewe now have two mutually recursive top-level definitions of True and False.
This means that we are now free to add new Booleans without changing the definition of the type
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We mentioned that according to our definition of FP and OOP, first-class functions counter-
intuitively belong to the object-oriented space, so let us substantiate that claim. Programmers in
functional programming languages can definemany types, but they usually cannot define the func-
tion type. Functions can be defined, however, using codata types: A function is just an object which
implements an interface with one apply method. For example, functions from natural numbers to
Booleans, and the constant function which always returns true are defined in the following way:

codata Fun { ap(x: Nat): Bool } codef ConstTrue: Fun { ap(_) => True }

The research question that motivated this paper is this: If functional programming can be and
has been extended to dependent functional programming, can object-oriented programming be
similarly extended? Codata has been introduced tomany proof assistants before, but for an entirely
different purpose.The purpose was tomodel certain infinite structures and coinductive objects, not
to program in an object-oriented style. In this paper, we are interested in this second aspect, and
we are (to the best of our knowledge) the first ones to discuss this question in detail. To approach
this question in a principled way, we need an additional technical tool, defunctionalization and
refunctionalization, which we introduce in the next section.

1.2 De- and Refunctionalization: A Tool for Systematic Language Design
Now that we have introduced two alternative programming paradigms, let us look at how one
paradigm can express programs in the other paradigm. One way in which object-oriented pro-
grammers have often represented the functional style is with the visitor pattern [Gamma et al.
1995]. Later, Downen et al. [2019] showed how the visitor pattern can be used as a compilation
technique for data and codata types; using the visitor pattern, they can compile functional pro-
grams to object-oriented programs, and using a related tabulation technique they can compile
object-oriented programs to functional ones. In this paper, we use an alternative technique: de-
functionalization and refunctionalization.

Defunctionalization [Danvy and Nielsen 2001; Reynolds 1972] is a whole-program transforma-
tion which eliminates higher-order functions by replacing lambda abstractions by constructors
of a data type, together with a top-level apply function. Refunctionalization [Danvy and Millikin
2009] is its partial inverse, and re-introduces higher-order functions by replacing occurrences of
the constructors by lambda abstractions. We already observed in the previous section that the
function type is just one instance of a codata type. Based on this observation, Rendel et al. [2015]
showed that defunctionalization and refunctionalization can be generalized to arbitrary data and
codata types, which makes these transformations both more powerful and more symmetric since
refunctionalization is now a full inverse instead of a partial one.

Let us look at an example of how these generalized defunctionalization and refunctionalization
transformations work. In Figure 1a we have defined Booleans as a data type with two construc-
tors, and negation by pattern matching on True and False. For negation we use syntax familiar
to object-oriented programmers: negating a boolean ! can be written as ! .neg. Refunctionalizing
this program results in the program in Figure 1b. In this representation, negation is the single ob-
servation of a codata type, and True and False are defined as objects implementing this interface.

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

(a) Functional programming style.

codata Bool { neg: Bool }
codef True: Bool { neg => False }
codef False: Bool { neg => True }

(b) Object-oriented style.
Fig. 1. Two representations of the same program.

De/Refunctionalization is Matrix transposition!



Booleans with Proofs

24

4 David Binder, Ingo Skupin, Tim Süberkrüb, and Klaus Ostermann

One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(! :
Type, " # : !) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

In the object-oriented decomposition, shown in Figure 2b, we have kept the definition of the
Martin-Löf equality type. The definition of Booleans, on the other hand, has changed dramatically.
Booleans are now defined via the two observations that we defined in the original program: nega-
tion and the proof that negating a boolean twice is the identity. Instead of two canonical construc-
tors True and Falsewe now have two mutually recursive top-level definitions of True and False.
This means that we are now free to add new Booleans without changing the definition of the type
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One way to visualize how defunctionalization and refunctionalization work is to think of each
type as a matrix. The two programs of Figure 1, for example, can be represented by the following
matrix:

Bool True False
neg False True

The rows of the matrix enumerate all the ways elements of the type can be consumed, whereas
the columns enumerate the ways in which elements of the type can be constructed. The cells of
the matrix specify the result of an interaction between one of each. Data types and codata types
are then just two different linear presentations of this type-matrix, and defunctionalization and
refunctionalization transpose the linearization.

In this paper, we use defunctionalization and refunctionalization not as a compilation technique,
but as a tool for systematic language design. These transformations are only total in a language
where the data and codata fragments of the language are equally expressive. We can therefore
use them to systematically derive the codata fragment of an object-oriented dependently-typed
language by starting from a familiar design for dependent data types and pattern matching, and
refunctionalizing programs in that language.

1.3 A Minimal Dependently-Typed Example
Let us now extend the example from the previous section by a simple proof that negation is an
involution, i.e. that applying negation twice is the identity. We look at this example first from the
familiar point of view of functional programming, and then from themore unfamiliar point of view
of dependently-typed object-oriented programming. These two dual presentations are not artifi-
cially constructed but inter-derived using de- and refunctionalization introduced in the previous
section. In the accompanying implementation that we provide, each version can be automatically
transformed into the other presentation at the click of a button.

In the functional decomposition, shown in Figure 2a, we use the Martin-Löf equality type Eq(! :
Type, " # : !) to express propositional equality. The way we defined the proposition that negating
a boolean twice is the identity function is interesting. Instead of a dependent function, it is formu-
lated more directly as an elimination on a named boolean self which yields a proof that self is
equal to self twice-negated, i.e. self.neg.neg. The proof pattern matches on True and False and
returns the Refl constructor in each branch.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

data Bool { True, False }
def Bool.neg: Bool {

True => False,
False => True }

def (self: Bool).neg_inverse
: Eq(Bool, self, self.neg.neg) {
True => Refl(Bool, True),
False => Refl(Bool, False) }

(a) Functional programming style.

data Eq(a: Type, x y: a) {
Refl(a: Type, x: a): Eq(a, x, x) }

codata Bool {
neg: Bool,
(self: Bool).neg_inverse

: Eq(Bool, self, self.neg.neg) }
codef True: Bool {

neg => False,
neg_inverse => Refl(Bool, True) }

codef False: Bool {
neg => True,
neg_inverse => Refl(Bool, False) }

(b) Object-oriented style.
Fig. 2. Extending Figure 1 with proofs.

In the object-oriented decomposition, shown in Figure 2b, we have kept the definition of the
Martin-Löf equality type. The definition of Booleans, on the other hand, has changed dramatically.
Booleans are now defined via the two observations that we defined in the original program: nega-
tion and the proof that negating a boolean twice is the identity. Instead of two canonical construc-
tors True and Falsewe now have two mutually recursive top-level definitions of True and False.
This means that we are now free to add new Booleans without changing the definition of the type

Self Parameters!
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class spec: PR
public methods:
store: X × A → X
read: X → {error} + A
empty: X → X

assertions:
s.empty.read = error
s.read = error

" s.store(a).read = a
s.read = a

" s.store(b).read = a
creation:
new.read = error

end class spec

(a) Original specification

codata PR {
store(a: A): PR,
read: MaybeA,
empty: PR,
-- | Reading from the empty buffer yields an error
(s: PR).assert_empty: Eq(MaybeA, s.empty.read, Error),
-- | We can store an element into an empty buffer
(s: PR).assert_empty_store(a: A)

: Eq(MaybeA, s.read, Error) -> Eq(MaybeA, s.store(a).read, Just(a)),
-- | We cannot replace the element in the buffer without calling `empty`
(s: PR).assert_persistent(a b: A)

: Eq(MaybeA, s.read, Just(a)) -> Eq(MaybeA, s.store(b).read, Just(a)) }

(b) Implementation in our system.
Fig. 5. Persistent read (PR) specification for one-element buffers from Jacobs [1995].

codata Buffer(m: Nat) {
Buffer(S(n)).read(n: Nat): Pair(Bool, Buffer(n)) }

codef EmptyBuffer: Buffer(Z) { read(n) absurd }
codef Singleton(b: Bool): Buffer(S(Z)) { read(n) => MkPair(Bool, Buffer(Z), b, EmptyBuffer) }

We can see that, as usual for dependent (co)pattern matching, infeasible pattern matches may
arise which need to be marked as absurd. That is, when we implement the buffer interface for the
empty buffer we don’t have to implement the read method since it can never be called.

However, in this work, we go beyond indexed codata types, which admit an intrinsic verification
style. We also want to support the extrinsic approach, where we want to separate our objects from
their specifications. Jacobs [1995] provides us with an initial concept of how to attain that goal. He
proposes a system of coalgebraic specifications that can be used to verify object-oriented classes.
As an example, Figure 5a shows a coalgebraic specification for a one-element buffer that exhibits
persistent read (PR) behavior: After an element has been stored, it cannot be replaced using the
storemethod. Instead, one needs to call the method empty to explicitly empty the buffer. Reading
from the empty buffer returns an error.This specification of the buffer is given as a set of assertions
that reference the buffer state s.

In our system, we can realize this concept using self-parameters on destructors, allowing us
to express specifications as observations on codata types. The codata type in Figure 5 defines the
verified interface for persistent read buffers in our system. Similarly, we can apply this approach
to express verified interfaces such as functors or monads.

2.3 Dependent Functions
Unlike in most other dependent type theories, the Π-type of dependent functions is not part of our
core theory, but can be defined in a library. The Π-type is defined as a codata type indexed over a
type family p, for which we use the ordinary non-dependent function type:
-- | Non-dependent Functions
codata Fun(a b: Type) {

Fun(a, b).ap(a b: Type, x: a): b }
-- | Dependent Functions
codata Π(a: Type, p: a -> Type) {

Π(a, p).dap(a: Type, p: a -> Type, x: a): p.ap(a, Type, x) }

We propose that both dependent and non-dependent functions should be user-defined instead
of built-in. The designers of Java decided to follow this approach when they introduced lambda
abstractions as instances of functional interfaces [Goetz et al. 2014; Setzer 2003] in Java 8. This
shows that our proposal is not radical, and we think it is also useful. Apart from reducing the
complexity of the core language, they simplify the situation if we have more than one function
type. This is the case in substructural systems where we have linear and non-linear functions. For

Basold & Geuvers show how to do it without non-dependent functions!
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instance, in the Rust programming language, there are three different built-in function traits Fn,
FnOnce, and FnMut, which differ in the modality of the receiver3.

2.4 Weak and Strong Dependent Pairs
In the previous section, we showed how to define the Π-type. For the Π-type we had no choice
but to define it as a codata type4, but for the Σ-type we can choose whether to model it as a data
or codata type. This choice distinguishes weak and strong Σ-types [Howard 1980]: Strong Σ-types
are defined as a codata type with two projections, where the second projection mentions the result
of the first projection in its return type; weak Σ-types, by contrast, are defined as a data type with
one constructor which pairs the first and second element. This difference is more obvious if we
first consider the case of non-dependent pairs, which can also be written as either a data or codata
type.

data ×₊(A B: Type) {
Pair(A B: Type, x: A, y: B): ×₊(A, B) }

def ×₊(A, B).π₁(A B: Type): A {
Pair(_, _, x, y) => x }

def ×₊(A, B).π₂(A B: Type): B {
Pair(_, _, x, y) => y }

codata ×₋(A B: Type) {
×₋(A, B).π₁(A B: Type): A,
×₋(A, B).π₂(A B: Type): B }

codef Pair(A B: Type, x: A, y: B): ×₋(A, B) {
π₁(_, _) => x,
π₂(_, _) => y }

These two representations can be obtained from each other by defunctionalization and refunction-
alization. This is still the case when we generalize non-dependent pairs to the Σ-type. Similar to
the Π-type in Section 2.3, the Σ-type is indexed by a type family ! . As a data type, it is defined by
one constructor Pair which takes the type family! , an element " of type# and a witness$ as ar-
guments. As a codata type, we still have two projections %1 and %2 as in the case of non-dependent
pairs. But the second projection now uses the self-parameter to guarantee that an element of type
! applied to self .%1 is returned.

data Σ₊(A: Type, T: A -> Type) {
Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x) )

: Σ₊(A, T) }
def Σ₊(A, T).π₁(A: Type, T: A -> Type): A {

Pair(A, T, x, w) => x }
def (self: Σ₊(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) {
Pair(A, T, x, w) => w }

codata Σ₋(A: Type, T: A -> Type) {
Σ₋(A, T).π₁(A: Type, T: A -> Type): A,
(self: Σ₋(A, T)).π₂(A: Type, T: A -> Type)

: T.ap(A, Type, self.π₁(A, T)) }
codef Pair(A: Type,

T: A -> Type,
x: A,
w: T.ap(A, Type, x) )

: Σ₋(A, T) {
π₁(A, T) => x,
π₂(A, T) => w }

In fact, Agda can already represent Σ-types in both of these ways. But there is one caveat: Agda
was not originally designed with codata types in mind, and its codata types are implemented on
top of dependent records, which limits what kind of codata types are possible. For example, the
order of the destructors in a codata type matter for Agda, so we cannot reorder the first and second
projection. In our system the destructors of a codata type are not ordered and can mutually refer
to each other, which precisely mirrors how definitions are mutually recursive on the toplevel.

But why should we care about these two alternative encodings of the Σ-type? Take, for example,
Eisenberg et al. [2021] who discuss the addition of existential types to Haskell. Since Haskell both
is lazy and supports type erasure, Eisenberg et al. are driven to a design that uses strong existential
types. We think that by using the framework of data and codata types we can make these kind of
differences even clearer.

3See the Rust standard library documentation on operators: doc.rust-lang.org/std/ops/index.html.
4If we want to define the function type as a data type, then we have to use a system with higher-order inference rules,
cf. Garner [2009].
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2.5 Codata Encodings of Natural Numbers
Starting with the inception of the lambda calculus, researchers have been interested in functional
encodings of data types such as booleans, natural numbers and lists. Classical examples of func-
tional encodings are the Church, Scott and Parigot encodings of data types (cf. Geuvers [2014];
Koopman et al. [2014]). Functions are from our perspective just one particular instance of a codata
type, so we are interested in the more general problem of codata encodings instead of functional
encodings. Most codata encodings of data types can be obtained by refunctionalizing a data type
with an appropriate observation.That the Church encoding can be obtained from refunctionalizing
a program with Peano numbers and an iter function has already been observed by Ostermann
and Jabs [2018]; we restate this example in Figure 6.

data Nat { Z, S(p: Nat) }
def Nat.iter(A: Type, z: A, s: A -> A): A {

Z => z,
S(p) => s.ap(A, A, p.iter(A, z, s)) }

(a) Data variant

codata Nat { iter(A: Type, z: A, s: A -> A): A }
codef S(p: Nat): Nat {

iter(A, z, s) => s.ap(A, A, p.iter(A, z, s)) }
codef Z: Nat { iter(A, z, s) => z }

(b) Codata variant
Fig. 6. The Church encoding as a refunctionalized program on Peano numbers.

We can observe that the codata type in Figure 6b which represents the Church encoding of
natural numbers is not recursive. This corresponds to the well-known theorem that Church encod-
ings can be typed in pure system F. If we apply the same method to obtain the Scott or Parigot
encoding of natural numbers, then we can observe that the resulting codata type is recursive. This
corresponds to the other well-known theorem that these encodings can not be typed in pure Sys-
tem F and require recursive types.

We can even go one step further. Geuvers [2001] showed that these previous encodings cannot
express induction or dependent elimination. One way to obtain typed functional encodings which
can express induction is to add a form of self types to the system; this kind of encoding was
introduced by Fu and Stump [2014]. While it is hard to prove an exact correspondence, we think
that the essential idea of the encoding of Fu and Stump can be expressed in our system in Figure 7
and Figure 8.

codef StepFun(P: Nat -> Type): Fun(Nat, Type) {
ap(_, _, x) => P.ap(Nat, Type, x) -> P.ap(Nat, Type, S(x)) }

data Nat { S(m: Nat), Z }
def (n: Nat).ind(P: Nat -> Type, base: P.ap(Nat, Type, Z), step: Π(Nat, StepFun(P)))

: P.ap(Nat, Type, n) {
S(m) =>

step.dap(Nat, StepFun(P), m)
.ap(P.ap(Nat, Type, m), P.ap(Nat, Type, S(m)), m.ind(P, base, step)),

Z => base }

Fig. 7. The data type of natural numbers with an induction principle.

In Figure 7 we have encoded induction using a helper codata type StepFun which encodes the
induction step for a given predicate ! on natural numbers. Induction is then expressed as the
observation ind on a natural number " which expects the base case and the induction step of the
induction as arguments. The argument " on which we define the observation occurs itself in the
return type. Refunctionalization of this program results in Figure 8.
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Obtain functional encodings (Church, Scott, Parigot) via refunctionalization!
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codef StepFun(P: Nat -> Type): Fun(Nat, Type) {
ap(_, _, x) => P.ap(Nat, Type, x) -> P.ap(Nat, Type, S(x)) }

codata Nat {
(n: Nat).ind(P: Nat -> Type, base: P.ap(Nat, Type, Z), step: Π(Nat, StepFun(P)))

: P.ap(Nat, Type, n) }
codef Z: Nat { ind(P, base, step) => base }
codef S(m: Nat): Nat {

ind(P, base, step) =>
step.dap(Nat, StepFun(P), m)

.ap(P.ap(Nat, Type, m), P.ap(Nat, Type, S(m)), m.ind(P, base, step)) }

Fig. 8. The encoding of Fu and Stump can be obtained by refunctionalizing the program in Figure 7.

We think that this is further evidence that the self-parameters we introduced to the system occur
naturally when we go from the non-dependent to the dependent setting.

3 CASE STUDY
We will now further illustrate the benefits of dependently typed object-oriented programming
in a small case study. For this, we create a mockup of a dependently typed web server. We will
observe that we can conveniently extend both the supported routes of the web server and the
supported methods to access these routes. We will also see how we can conveniently state and
enforce properties in intrinsic as well as in extrinsic style.

3.1 A Functional Web Server
We start in the familiar realm of functional programming. For the purpose of this demonstration,
we will create a simple web server that allows all users to read, but only authenticated users to
increment a counter. For this, we track user sessions using the State type shown below. As an
instance of intrinsic verification, we track on the type level whether the user is authenticated.
Possible responses from the server are specified by the Response type.
codata User { hasCredentials: Bool }
codata State(loggedIn: Bool) {

State(False).login(u: User): State(u.hasCredentials),
State(True).logout: State(False),
State(True).increment: State(True),
State(True).set(n: Nat): State(True),
State(b).counter(b: Bool): Nat }

data Response { Forbidden, Return(n: Nat) }

Our web server should accept a couple of HTTP request methods (get, post, …) for a set of
routes (Index, Admin, …).
data Route { Index }
def Route.requiresLogin: Bool { Index => False }
def (self: Route).get: State(self.requiresLogin) -> Response {

Index => \state. Return(state.counter(False)) }

Adding support for a new request method is as simple as adding a function. For instance, we want
to handle post requests, even though we forbid them for the Index route:
def (self: Route).post: State(self.requiresLogin) -> ×₋(State(self.requiresLogin), Response) {

Index =>
\state. comatch {

fst(a, b) => state,
snd(a, b) => Forbidden } }

3.2 Adding New Routes in Object-Oriented Style
While adding new methods is a local change, adding a new route in the functional representation
requires touching all pattern matches on Route in the program. Therefore, before adding a route
to increment the counter on a POST request, let us refunctionalize Route to its object-oriented
decomposition:

Fu & Stump: Self Types for Dependently Typed Lambda Encodings 



We had to make some 
compromises
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Design Constraints
The Cost of Total Defunctionalization and Refunctionalization

• No eta-laws for types which will be de/refunctionalized


• Alpha-equivalence cannot be used; comatches are generative


• All arguments of a type constructor are indices; no parameters


• We use the "Type : Type" axiom


• Positivity is not preserved under de/refunctionalization, so we don't check it

30

λx . x ≠ λy . y



Future Work
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Future Work

• Make the language usable: Modules, implicit arguments, code generation,...


• Investigate the combination of dependent types with modalities (à la QTT, 
Granule)


• Find of consistency checks that are stable under defunctionalization and 
refunctionalization.
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Original Title: 
"The Proof Expression Problem"
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Reviewers didn't like it (for good reason!); still expresses our ambition.



Time for Questions!
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