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The semantics of the pattern match depends on the order of clauses
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The meaning of each individual clause depends on its position 
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Making clauses non-overlapping by expanding all constructors is impractical
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Make Order-Independent 
Pattern Matching Practical
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Why Order-Independence Matters
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Why Order-Independence Matters
Equational Reasoning!
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19:4 The Algebra of Patterns

Section 4 introduces our second contribution, a small term language that contains pattern-
matching expressions with default clauses. This section also introduces exemplary typing
rules to the untyped patterns of Section 3 and the constructs of our term language; the
compilation of patterns described in later sections, however, does not depend on patterns
being typed.
Not all extensions to pattern matching can be compiled to efficient code, but ours can.
In Section 5 we show how to compile patterns by translating them to a variant of a
disjunctive normal form. We use these normalized patterns in the compilation of pattern-
matching expressions to decision trees, which we describe in Section 6.
We discuss future work in Section 7, related work in Section 8 and conclude in Section 9.

The results in sections Section 3 have been formally verified in the proof assistant Rocq,
and are made available as complementary material. Theorems and definitions which have
been formalized are marked with the symbol .

2 Motivation

Most programming languages that implement pattern matching use a first-match semantics
for which the order of clauses matters. Changing this state of affairs is our main motivation
for introducing a more expressive set of algebraic patterns. Let us therefore explain why we
think that first-match semantics is not a good default choice for declarative languages.

2.1 First-Match Semantics Weakens Equational Reasoning
Equational reasoning is one of the most important methods functional programmers use
to reason about code. Equational reasoning allows us to show that two expressions are
equivalent if we can obtain one from the other by a series of rewriting steps. Each rewriting
step is justified by some equation between terms, and functions defined by pattern matching
are one of the main sources of such equations. Take, for example, the definitions of the
functions ‘id’ and ‘map’:

id(x) := x (1)
map(f, []) := [] (2)
map(f, x :: xs) := f(x) :: map(f, xs) (3)

We can show that mapping the identity function over a list returns the original list, i.e. that
map(id, xs) = xs holds, by using the individual clauses of the definition of “map”:

map(id, []) =(2) []
map(id, x :: xs) =(3) id(x) :: map(id, xs) =(1) x :: map(id, xs) =(IH) x :: xs

We have annotated each rewriting step with the equation that justifies it, and in the last
step, we have used the induction hypothesis (IH). In this example, we have used the fact
that every clause of the pattern match is a valid equation that we can use for rewriting. But
this was only valid because the equations in the definition of ‘map’ do not overlap. To see
why this is essential, consider the example from the introduction again:

isRed(Red) := True (4)
isRed(_) := False (5)

19:4 The Algebra of Patterns

Section 4 introduces our second contribution, a small term language that contains pattern-
matching expressions with default clauses. This section also introduces exemplary typing
rules to the untyped patterns of Section 3 and the constructs of our term language; the
compilation of patterns described in later sections, however, does not depend on patterns
being typed.
Not all extensions to pattern matching can be compiled to efficient code, but ours can.
In Section 5 we show how to compile patterns by translating them to a variant of a
disjunctive normal form. We use these normalized patterns in the compilation of pattern-
matching expressions to decision trees, which we describe in Section 6.
We discuss future work in Section 7, related work in Section 8 and conclude in Section 9.

The results in sections Section 3 have been formally verified in the proof assistant Rocq,
and are made available as complementary material. Theorems and definitions which have
been formalized are marked with the symbol .

2 Motivation

Most programming languages that implement pattern matching use a first-match semantics
for which the order of clauses matters. Changing this state of affairs is our main motivation
for introducing a more expressive set of algebraic patterns. Let us therefore explain why we
think that first-match semantics is not a good default choice for declarative languages.

2.1 First-Match Semantics Weakens Equational Reasoning
Equational reasoning is one of the most important methods functional programmers use
to reason about code. Equational reasoning allows us to show that two expressions are
equivalent if we can obtain one from the other by a series of rewriting steps. Each rewriting
step is justified by some equation between terms, and functions defined by pattern matching
are one of the main sources of such equations. Take, for example, the definitions of the
functions ‘id’ and ‘map’:

id(x) := x (1)
map(f, []) := [] (2)
map(f, x :: xs) := f(x) :: map(f, xs) (3)

We can show that mapping the identity function over a list returns the original list, i.e. that
map(id, xs) = xs holds, by using the individual clauses of the definition of “map”:

map(id, []) =(2) []
map(id, x :: xs) =(3) id(x) :: map(id, xs) =(1) x :: map(id, xs) =(IH) x :: xs

We have annotated each rewriting step with the equation that justifies it, and in the last
step, we have used the induction hypothesis (IH). In this example, we have used the fact
that every clause of the pattern match is a valid equation that we can use for rewriting. But
this was only valid because the equations in the definition of ‘map’ do not overlap. To see
why this is essential, consider the example from the introduction again:

isRed(Red) := True (4)
isRed(_) := False (5)

Equations for equational reasoning come from pattern matching clauses
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If we are using these clauses as equations we can now show that True is equal to False, using
the proof True =(4) isRed(Red) =(5) False. A human is of course very unlikely to make
such a silly mistake, but if we cannot guarantee that every clause holds as a valid equality
between expressions, then we also limit what automatic tools can do for us.

2.2 First-Match Semantics Complicates Reasoning About Change
Software engineering has been described as the problem of integrating programming over
time [28]. This means that we not only have to understand the meaning of a program at a
fixed point in time, but we also have to understand how the meaning of a program changes
as it is developed and maintained. It should therefore be as simple as possible to reason
about how the meaning of a program changes when a programmer adds a clause to a pattern
match, removes a clause from a pattern match, adds a constructor to a data type, or removes
a constructor from a data type. Let us see why first-match semantics complicates reasoning
about these kinds of changes.

If we want to understand the consequences of adding or removing a clause from a pattern
match, then we have to consider all clauses occurring both above and below the clause we
are changing. Having to reason about the entire context of the clause makes it much harder
to spot bugs in code reviews, since it is not uncommon that pattern matching expressions
can span multiple pages of code. Order-independent semantics guarantees that it doesn’t
matter if we add, delete or modify a clause at the beginning, middle or end of a list of
clauses.

The other kind of change that frequently occurs is that we add or remove a constructor
from an existing data type. Whether we have to adjust existing pattern matches depends on
how those have been written. Even if we enforce that clauses in a pattern matching expres-
sion must not overlap, we have multiple possibilities to write exhaustive pattern matches.
Consider a data type ‘Group’ which consists of administrators, registered users and guests.
We want to guarantee that only administrators have write access, but we have two possibil-
ities to write the function:

hasWriteAccess : Group → Bool hasWriteAccess : Group → Bool
hasWriteAccess(Admin) := True hasWriteAccess(Admin) := True
hasWriteAccess(RegisteredUser ∥ Guest) := False hasWriteAccess(¬Admin) := False

On the left side we have pattern matched exhaustively on the complement of Admin, whereas
on the right side we have used a negation pattern. These two programs behave the same,
but we can observe a difference when we add moderators as a fourth type of user. We have
to revisit the function on the left, whereas the function on the right continues to compile.

Some programming languages have already started to add support for enforcing these
kind of considerations. For example, Rust supports the #[non_exhaustive] attribute on
type declarations2. This attribute restricts pattern matches and ensures that they continue
to compile after a new constructor has been added to the type; annotating the Group type
with such an attribute would disallow the definition on the left. Dually, OCaml warns against
writing ‘fragile pattern matches’. A fragile pattern can hide newly added constructors, which
might have unintended consequences. The algebraic patterns presented in this paper provide
the necessary tools to program in situations where the programmer wants to enforce either
one of these dual restrictions. There is also some empirical evidence that programmers

2 Cp. doc.rust-lang.org/stable/reference/attributes/type_system.html.
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Why Order-Independence Matters
Reasoning about Change over Time

• Software engineering is programming integrated over time.


• PL design should be judged for how it accommodates change over time


• How does the meaning of a program change when you add clauses to a 
pattern match, or constructors to a data type.
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Justin Lubin and Sarah E. Chasins: How statically-typed functional programmers write code.

"Participants felt similarly about the use of wildcards in pattern 
matching, which silently assign pre-existing behavior to new 
variants of an enumeration. P7 mentioned that, in their main 
codebase, wildcards are completely disallowed for this reason, 
even though they make programming more convenient.
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A Boolean Algebra of Patterns
The cast of patterns

• Variable patterns:            x


• Constructor patterns:      C(p1,...,pn)


• Wildcard patterns:           _


• Absurd patterns:              #


• And patterns:                   p & p


• Or patterns:                      p || p


• Negation patterns:            p¬
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Generalize x @ p Patterns

Allow to express complement without 
mentioning all constructors
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Pattern matches: p ◃ v ! σ

Var
x ◃ v ! [x !→ v] Wild_ ◃ v ! []

p ̸ ◃v ! σ Neg1¬p ◃ v ! σ

p1 ◃ v ! σ Or1
p1 ∥ p2 ◃ v ! σ

p2 ◃ v ! σ Or2
p1 ∥ p2 ◃ v ! σ

p1 ◃ v ! σ1 p2 ◃ v ! σ2 And
p1 & p2 ◃ v ! σ1 ++ σ2

p1 ◃ v1 ! σ1 . . . pn ◃ vn ! σn CtorCn(p1, . . . , pn) ◃ Cn(v1, . . . , vn)! σ1 ++ . . . ++ σn

Pattern doesn’t match: p ̸ ◃v ! σ

Absurd# ̸ ◃v ! []
∃i : pi ̸ ◃vi ! σ Ctor1Cn(p1, . . . , pn) ̸ ◃Cn(v1, . . . , vn)! σ

p ◃ v ! σ Neg2¬p ̸ ◃v ! σ
Cn ̸= C′m

Ctor2Cn(p1, . . . , pn) ̸ ◃C′m(v1, . . . , vm)! []
p1 ̸ ◃v ! σ And1p1 & p2 ̸ ◃v ! σ

p2 ̸ ◃v ! σ And2p1 & p2 ̸ ◃v ! σ

p1 ̸ ◃v ! σ1 p2 ̸ ◃v ! σ2 Or
p1 ∥ p2 ̸ ◃v ! σ1 ++ σ2

Pattern is linear: p lin+ and p lin−

L-Var±
x lin± L-Absurd±

# lin± L-Wild±
_ lin±

p1,2 lin+ FVe(p1) = FVe(p2)
L-Or+

p1 ∥ p2 lin+
p1,2 lin− FVo(p1) ∩ FVo(p2) = ∅

L-Or−
p1 ∥ p2 lin−

p1,2 lin+ FVe(p1) ∩ FVe(p2) = ∅
L-And+

p1 & p2 lin+
p1,2 lin− FVo(p1) = FVo(p2)

L-And−
p1 & p2 lin−

p lin−

L-Neg+
¬p lin+

p lin+
L-Neg−

¬p lin−

pi lin+ ⋂n
i=1 FVe(pi) = ∅

L-Ctor+
Cn(p1, . . . , pn) lin+

pi lin− ⋃n
i=1 FVo(pi) = ∅

L-Ctor−
Cn(p1, . . . , pn) lin−

Pattern is deterministic: p det

D-Var
x det D-Wild_ det

p1 det
D-Neg¬p1 det D-Absurd# det

p1,2 det p1 "! p2 D-Or1
p1 ∥ p2 det

p1,2 det FVe(p1) = FVe(p2) = ∅
D-Or2

p1 ∥ p2 det
p1,2 det ¬p1 "! ¬p2 D-And1p1 & p2 det

p1,2 det FVo(p1) = FVo(p2) = ∅
D-And2p1 & p2 det

p1 det · · · pn det
D-Ctor

Cn(p1, . . . , pn) det

Figure 2 Rules for matching patterns against values, and checking for linearity and determinism.
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Figure 2 Rules for matching patterns against values, and checking for linearity and determinism.
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! Definition 5 (Semantic equivalence of substitutions, ). Two substitutions σ and σ′ are
semantically equivalent if they contain the same mappings:

! σ " ≡ ! σ′ " := ∀m, m ∈ σ ⇔ m ∈ σ′

We can now state the definition for semantic equivalence of patterns.
! Definition 6 (Semantic equivalence of patterns, ). Two patterns p and q are semantically
equivalent if they match the same values with equivalent substitutions, and if they also do
not match the same values with equivalent substitutions:

! p " ≡ ! q " := ∀v, ∀σ, p ◃ v " σ ⇒ ∃σ′, q ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ◃ v " σ ⇒ ∃σ′, p ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ p ̸ ◃v " σ ⇒ ∃σ′, q ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ̸ ◃v " σ ⇒ ∃σ′, p ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "

We have to include both judgment forms if we want semantic equivalence to be a con-
gruence relation. To see why this is the case, suppose that we omit the second half of
Definition 6. It would then follow that the two patterns # and ¬x are semantically equival-
ent since they match against the same set of values (i.e. no values at all). But if we apply a
negation-pattern to both patterns, then we can easily show that the resulting patterns are
no longer semantically equivalent: ! ¬# " ≡ ! _ " ̸≡ ! x " ≡ ! ¬¬x ". But since Definition 6 re-
quires both patterns to agree on the values they match and don’t match against, it actually
defines a congruence relation on patterns:
! Theorem 7 (Congruence, ). If ! p1 " ≡ ! p′

1 " to ! pn " ≡ ! p′
n " hold, then we also have

! ¬p1 " ≡ ! ¬p′
1 ", ! p1 & p2 " ≡ ! p′

1 & p′
2 ", ! p1 ∥ p2 " ≡ ! p′

1 ∥ p′
2 " and ! C(p1, . . . , pn) " ≡

! C(p′
1, . . . , p′

n) ".
We can use the definition of semantic equivalence to prove that the following algebraic

laws hold for patterns:
! Theorem 8 (Algebraic Equivalences of Patterns, I, ). For all patterns p, q, r, the following
equivalences hold:

! p & q " ≡ ! q & p " ! p ∥ q " ≡ ! q ∥ p " Commutativity
! p & (q & r) " ≡ ! (p & q) & r " ! p ∥ (q ∥ r) " ≡ ! (p ∥ q) ∥ r " Associativity

! p & _ " ≡ ! p " ! p ∥ # " ≡ ! p " Neutral Elements
! ¬_ " ≡ ! # " ! ¬# " ≡ ! _ " Duality

! ¬(p ∥ q) " ≡ ! (¬p) & (¬q) " ! ¬(p & q) " ≡ ! (¬p) ∥ (¬q) " De Morgan
! ¬¬p " ≡ ! p " Double Negation

In addition to these boolean laws we can also prove the following equivalences which
involve constructor patterns:
! Theorem 9 (Equivalences of Constructor Patterns, I, ). For all patterns p1 to pn and p′

1
to p′

n, the following equivalences hold:

! C(p1, . . . , pn) & C(p′
1, . . . , p′

n) " ≡ ! C(p1 & p′
1, . . . , pn & p′

n) "
! C(p1, . . . , pi ∥ p′

i, . . . , pn) " ≡ ! C(p1, . . . , pi, . . . , pn) ∥ C(p1, . . . , p′
i, . . . , pn) "

There are still some equivalences that we expect to hold but which are missing from
Theorem 8 and Theorem 9. These additional laws, like the distributive law for and- and
or-patterns, are not universally valid and require additional restrictions on patterns. We
will motivate and introduce these additional constraints in the next subsection.

Two patterns are equivalent if they match against the same values 
 with equivalent substitutions, and don't match against the same values 

with equivalent substitutions.
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! Definition 5 (Semantic equivalence of substitutions, ). Two substitutions σ and σ′ are
semantically equivalent if they contain the same mappings:

! σ " ≡ ! σ′ " := ∀m, m ∈ σ ⇔ m ∈ σ′

We can now state the definition for semantic equivalence of patterns.
! Definition 6 (Semantic equivalence of patterns, ). Two patterns p and q are semantically
equivalent if they match the same values with equivalent substitutions, and if they also do
not match the same values with equivalent substitutions:

! p " ≡ ! q " := ∀v, ∀σ, p ◃ v " σ ⇒ ∃σ′, q ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ◃ v " σ ⇒ ∃σ′, p ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ p ̸ ◃v " σ ⇒ ∃σ′, q ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ̸ ◃v " σ ⇒ ∃σ′, p ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "

We have to include both judgment forms if we want semantic equivalence to be a con-
gruence relation. To see why this is the case, suppose that we omit the second half of
Definition 6. It would then follow that the two patterns # and ¬x are semantically equival-
ent since they match against the same set of values (i.e. no values at all). But if we apply a
negation-pattern to both patterns, then we can easily show that the resulting patterns are
no longer semantically equivalent: ! ¬# " ≡ ! _ " ̸≡ ! x " ≡ ! ¬¬x ". But since Definition 6 re-
quires both patterns to agree on the values they match and don’t match against, it actually
defines a congruence relation on patterns:
! Theorem 7 (Congruence, ). If ! p1 " ≡ ! p′

1 " to ! pn " ≡ ! p′
n " hold, then we also have

! ¬p1 " ≡ ! ¬p′
1 ", ! p1 & p2 " ≡ ! p′

1 & p′
2 ", ! p1 ∥ p2 " ≡ ! p′

1 ∥ p′
2 " and ! C(p1, . . . , pn) " ≡

! C(p′
1, . . . , p′

n) ".
We can use the definition of semantic equivalence to prove that the following algebraic

laws hold for patterns:
! Theorem 8 (Algebraic Equivalences of Patterns, I, ). For all patterns p, q, r, the following
equivalences hold:

! p & q " ≡ ! q & p " ! p ∥ q " ≡ ! q ∥ p " Commutativity
! p & (q & r) " ≡ ! (p & q) & r " ! p ∥ (q ∥ r) " ≡ ! (p ∥ q) ∥ r " Associativity

! p & _ " ≡ ! p " ! p ∥ # " ≡ ! p " Neutral Elements
! ¬_ " ≡ ! # " ! ¬# " ≡ ! _ " Duality

! ¬(p ∥ q) " ≡ ! (¬p) & (¬q) " ! ¬(p & q) " ≡ ! (¬p) ∥ (¬q) " De Morgan
! ¬¬p " ≡ ! p " Double Negation

In addition to these boolean laws we can also prove the following equivalences which
involve constructor patterns:
! Theorem 9 (Equivalences of Constructor Patterns, I, ). For all patterns p1 to pn and p′

1
to p′

n, the following equivalences hold:

! C(p1, . . . , pn) & C(p′
1, . . . , p′

n) " ≡ ! C(p1 & p′
1, . . . , pn & p′

n) "
! C(p1, . . . , pi ∥ p′

i, . . . , pn) " ≡ ! C(p1, . . . , pi, . . . , pn) ∥ C(p1, . . . , p′
i, . . . , pn) "

There are still some equivalences that we expect to hold but which are missing from
Theorem 8 and Theorem 9. These additional laws, like the distributive law for and- and
or-patterns, are not universally valid and require additional restrictions on patterns. We
will motivate and introduce these additional constraints in the next subsection.

Requires semantics to be non-deterministic!
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! Definition 5 (Semantic equivalence of substitutions, ). Two substitutions σ and σ′ are
semantically equivalent if they contain the same mappings:

! σ " ≡ ! σ′ " := ∀m, m ∈ σ ⇔ m ∈ σ′

We can now state the definition for semantic equivalence of patterns.
! Definition 6 (Semantic equivalence of patterns, ). Two patterns p and q are semantically
equivalent if they match the same values with equivalent substitutions, and if they also do
not match the same values with equivalent substitutions:

! p " ≡ ! q " := ∀v, ∀σ, p ◃ v " σ ⇒ ∃σ′, q ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ◃ v " σ ⇒ ∃σ′, p ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ p ̸ ◃v " σ ⇒ ∃σ′, q ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ̸ ◃v " σ ⇒ ∃σ′, p ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "

We have to include both judgment forms if we want semantic equivalence to be a con-
gruence relation. To see why this is the case, suppose that we omit the second half of
Definition 6. It would then follow that the two patterns # and ¬x are semantically equival-
ent since they match against the same set of values (i.e. no values at all). But if we apply a
negation-pattern to both patterns, then we can easily show that the resulting patterns are
no longer semantically equivalent: ! ¬# " ≡ ! _ " ̸≡ ! x " ≡ ! ¬¬x ". But since Definition 6 re-
quires both patterns to agree on the values they match and don’t match against, it actually
defines a congruence relation on patterns:
! Theorem 7 (Congruence, ). If ! p1 " ≡ ! p′

1 " to ! pn " ≡ ! p′
n " hold, then we also have

! ¬p1 " ≡ ! ¬p′
1 ", ! p1 & p2 " ≡ ! p′

1 & p′
2 ", ! p1 ∥ p2 " ≡ ! p′

1 ∥ p′
2 " and ! C(p1, . . . , pn) " ≡

! C(p′
1, . . . , p′

n) ".
We can use the definition of semantic equivalence to prove that the following algebraic

laws hold for patterns:
! Theorem 8 (Algebraic Equivalences of Patterns, I, ). For all patterns p, q, r, the following
equivalences hold:

! p & q " ≡ ! q & p " ! p ∥ q " ≡ ! q ∥ p " Commutativity
! p & (q & r) " ≡ ! (p & q) & r " ! p ∥ (q ∥ r) " ≡ ! (p ∥ q) ∥ r " Associativity

! p & _ " ≡ ! p " ! p ∥ # " ≡ ! p " Neutral Elements
! ¬_ " ≡ ! # " ! ¬# " ≡ ! _ " Duality

! ¬(p ∥ q) " ≡ ! (¬p) & (¬q) " ! ¬(p & q) " ≡ ! (¬p) ∥ (¬q) " De Morgan
! ¬¬p " ≡ ! p " Double Negation

In addition to these boolean laws we can also prove the following equivalences which
involve constructor patterns:
! Theorem 9 (Equivalences of Constructor Patterns, I, ). For all patterns p1 to pn and p′

1
to p′

n, the following equivalences hold:

! C(p1, . . . , pn) & C(p′
1, . . . , p′

n) " ≡ ! C(p1 & p′
1, . . . , pn & p′

n) "
! C(p1, . . . , pi ∥ p′

i, . . . , pn) " ≡ ! C(p1, . . . , pi, . . . , pn) ∥ C(p1, . . . , p′
i, . . . , pn) "

There are still some equivalences that we expect to hold but which are missing from
Theorem 8 and Theorem 9. These additional laws, like the distributive law for and- and
or-patterns, are not universally valid and require additional restrictions on patterns. We
will motivate and introduce these additional constraints in the next subsection.Essential for correctness of compilation algorithm.
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variables appear in the substitution. In the and-pattern p1 & p2 we require that FVe(p1) is
disjoint from FVe(p2) since we do not want the same variable to be mapped to two values in
the substitution. The reasoning is very similar for constructor patterns C(p1, . . . , pi) where
we require all the FVe(pi) to be disjoint.

Next, let us look at the restrictions on FVo(e), i.e. the variables which occur under
an odd number of negations. The rules for and-patterns and or-patterns are motivated by
duality. We have seen that the De Morgan rules are valid for patterns. We therefore want,
for example, that if the pattern ¬(p1 ∥ p2) is linear, the pattern ¬p1 & ¬p2 should be linear
as well. For this to be true, the restrictions on FVo(p) for or-patterns have to mirror the
restrictions on FVe(p) for and-patterns, and vice-versa. We still have to explain why we
require for a constructor pattern C(p1, . . . , pn) that all FVo(pi) have to be the empty set.
The reason for this restriction lies in the following semantic equivalence, which is motivated
by its importance for rewriting patterns into a normal form (see Section 5.1) and which we
will prove below.

! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , _) ∥ . . . ∥ C(_, . . . , ¬pn) "

The pattern on the right consists of several patterns that are joined by or-patterns. The
rules for or-patterns require that each disjunct contains the same sets FVe(−). But since
the first pattern ¬C(_, . . . , _) doesn’t contain any variables, the other disjuncts must not
contain any variables under an even number of negations. And since the subpatterns pi

occur under a negation, we can deduce that the patterns pi must not contain any variables
under an odd number of negations.

Using linearity we can now prove the missing equivalences which were not included in
Theorems 8 and 9.

! Theorem 12 (Algebraic equivalences of Patterns, II, ). For all patterns p, q and r, the
following equivalences hold if the patterns on both sides are linear (i.e. lin±).

! p & (q ∥ r) " ≡ ! (p & q) ∥ (p & r) " ! p ∥ (q & r) " ≡ ! (p ∥ q) & (p ∥ r) " Distributivity
! p & p " ≡ ! p " ! p ∥ p " ≡ ! p " Idempotence
! p & # " ≡ ! # " ! p ∥ _ " ≡ ! _ " Zeros

Theorem 8 and Theorem 12 taken together show that patterns form a boolean algebra,
with the caveat that the conjunction or disjunction of two linear patterns does not neces-
sarily result in a linear pattern. We can also prove some additional equivalences involving
constructor patterns.

! Theorem 13 (Equivalences of Constructor Patterns, II, ). For all patterns p1 to pn and p′
1

to p′
n and constructors C ̸= C′, the following equivalences hold if the patterns on both sides

are linear (i.e. lin±).

! C(p1, . . . , #, . . . , pn) " ≡ ! # "
! C(p1, . . . , pn) & C′(p′

1, . . . , p′
m) " ≡ ! # "

! C(p1, . . . , pn) & ¬C′(p′
1, . . . , p′

m) " ≡ ! C(p1, . . . , pn) "
! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , pn) ∥ . . . ∥ C(p1, . . . , ¬pn) "

The equivalences of Theorem 13 are essential for proving the correctness of the normal-
ization algorithm specified in Section 5.

Patterns on both sides might have different sets of free variables.

Details in the paper
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variables appear in the substitution. In the and-pattern p1 & p2 we require that FVe(p1) is
disjoint from FVe(p2) since we do not want the same variable to be mapped to two values in
the substitution. The reasoning is very similar for constructor patterns C(p1, . . . , pi) where
we require all the FVe(pi) to be disjoint.

Next, let us look at the restrictions on FVo(e), i.e. the variables which occur under
an odd number of negations. The rules for and-patterns and or-patterns are motivated by
duality. We have seen that the De Morgan rules are valid for patterns. We therefore want,
for example, that if the pattern ¬(p1 ∥ p2) is linear, the pattern ¬p1 & ¬p2 should be linear
as well. For this to be true, the restrictions on FVo(p) for or-patterns have to mirror the
restrictions on FVe(p) for and-patterns, and vice-versa. We still have to explain why we
require for a constructor pattern C(p1, . . . , pn) that all FVo(pi) have to be the empty set.
The reason for this restriction lies in the following semantic equivalence, which is motivated
by its importance for rewriting patterns into a normal form (see Section 5.1) and which we
will prove below.

! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , _) ∥ . . . ∥ C(_, . . . , ¬pn) "

The pattern on the right consists of several patterns that are joined by or-patterns. The
rules for or-patterns require that each disjunct contains the same sets FVe(−). But since
the first pattern ¬C(_, . . . , _) doesn’t contain any variables, the other disjuncts must not
contain any variables under an even number of negations. And since the subpatterns pi

occur under a negation, we can deduce that the patterns pi must not contain any variables
under an odd number of negations.

Using linearity we can now prove the missing equivalences which were not included in
Theorems 8 and 9.

! Theorem 12 (Algebraic equivalences of Patterns, II, ). For all patterns p, q and r, the
following equivalences hold if the patterns on both sides are linear (i.e. lin±).

! p & (q ∥ r) " ≡ ! (p & q) ∥ (p & r) " ! p ∥ (q & r) " ≡ ! (p ∥ q) & (p ∥ r) " Distributivity
! p & p " ≡ ! p " ! p ∥ p " ≡ ! p " Idempotence
! p & # " ≡ ! # " ! p ∥ _ " ≡ ! _ " Zeros

Theorem 8 and Theorem 12 taken together show that patterns form a boolean algebra,
with the caveat that the conjunction or disjunction of two linear patterns does not neces-
sarily result in a linear pattern. We can also prove some additional equivalences involving
constructor patterns.

! Theorem 13 (Equivalences of Constructor Patterns, II, ). For all patterns p1 to pn and p′
1

to p′
n and constructors C ̸= C′, the following equivalences hold if the patterns on both sides

are linear (i.e. lin±).

! C(p1, . . . , #, . . . , pn) " ≡ ! # "
! C(p1, . . . , pn) & C′(p′

1, . . . , p′
m) " ≡ ! # "

! C(p1, . . . , pn) & ¬C′(p′
1, . . . , p′

m) " ≡ ! C(p1, . . . , pn) "
! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , pn) ∥ . . . ∥ C(p1, . . . , ¬pn) "

The equivalences of Theorem 13 are essential for proving the correctness of the normal-
ization algorithm specified in Section 5.Open World Assumption:  Other constructors of the data type are irrelevant

Example: ¬Inl(True) = ¬Inl(_) || Inl(¬True) 

¬Inl(_)  can be compiled to simple check of constructor tag
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5.1 Computing the Negation Normal Form
Consider the pattern ¬Pair(True, False) which matches anything except a tuple consisting
of the boolean values True and False. Another way to express the behavior of this pattern
is to say that it matches anything which isn’t a tuple, or it matches a tuple if either the left
element isn’t the value True or the right element isn’t the value False. We can therefore also
write the pattern as ¬Pair(_, _) ∥ Pair(¬True, _) ∥ Pair(_, ¬False). We can generalize
this observation and use it to push all negation-patterns inside, by repeatedly rewriting the
pattern using the last equation of Theorem 13. After we have normalized patterns in this way,
negation-patterns only occur applied to variables or to constructors where all subpatterns
of the constructor are wildcard patterns. We abbreviate these negated constructor patterns
¬Cn(_, . . . , _) as ¬Cn.

! Definition 20 (Negation Normal Forms). The syntax of negation normal forms is:

N ::= x | ¬x | ¬Cn | Cn(N1, . . . , Nn) | N & N | N ∥ N | _ | #

nnf−(p1 & p2) := nnf−(p1) ∥ nnf−(p2) nnf+(p1 & p2) := nnf+(p1) & nnf+(p2)
nnf−(p1 ∥ p2) := nnf−(p1) & nnf−(p2) nnf+(p1 ∥ p2) := nnf+(p1) ∥ nnf+(p2)

nnf−(¬p) := nnf+(p) nnf+(¬p) := nnf−(p)
nnf−(#) := _ nnf+(#) := #
nnf−(_) := # nnf+(_) := _
nnf−(x) := ¬x nnf+(x) := x

nnf−(Cn(p1, . . . , pn)) := ¬Cn ∥ Cn(nnf−(p1), . . . , _) ∥ . . . ∥ Cn(_, . . . , nnf−(pn))
nnf+(Cn(p1, . . . , pn)) := Cn(nnf+(p1), . . . , nnf+(pn))

The normalization procedure nnf(−) is split into the two functions nnf−(−) and nnf+(−)
which track if we are currently normalizing a negated or a non-negated pattern. At the top-
level, the function nnf(−) therefore just invokes nnf+(−).

! Example 21. We compute the negation normal form of our running example.

nnf+(x & (Sa ∥ Su)) = x & (Sa ∥ Su) nnf+(x & ¬(Sa ∥ Su)) = x & (¬Sa) & (¬Su)

We treat the negation normal forms N as a subset of patterns p, and hence all functions
and properties of patterns can also be applied to normal forms. If we translate a pattern
into negation normal form then the pattern is still wellformed, can be typed using the same
context and type, and has the same semantics as before. This is witnessed by the following
lemma.

! Lemma 22 (Negation Normalization Preserves Linearity, Typing and Semantics). For all
patterns p, contexts Γ, ∆ and types τ , we have:
1. Linearity is preserved: If p lin+, then nnf(p) lin+.
2. Typing is preserved: If Γ; ∆ ⇒ p : τ , then Γ; ∆ ⇒ nnf(p) : τ .
3. The patterns are semantically equivalent: If p lin±, then ! p " ≡ ! nnf(p) ".

Proof. Available in the appendix of the extended version of this paper [2]. "

5.2 Computing the Disjunctive Normal Form
The next step is to bring the negation normal form into a disjunctive normal form. Patterns
in disjunctive normal form consist of an outer disjunction of so-called “elementary conjuncts”
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variables appear in the substitution. In the and-pattern p1 & p2 we require that FVe(p1) is
disjoint from FVe(p2) since we do not want the same variable to be mapped to two values in
the substitution. The reasoning is very similar for constructor patterns C(p1, . . . , pi) where
we require all the FVe(pi) to be disjoint.

Next, let us look at the restrictions on FVo(e), i.e. the variables which occur under
an odd number of negations. The rules for and-patterns and or-patterns are motivated by
duality. We have seen that the De Morgan rules are valid for patterns. We therefore want,
for example, that if the pattern ¬(p1 ∥ p2) is linear, the pattern ¬p1 & ¬p2 should be linear
as well. For this to be true, the restrictions on FVo(p) for or-patterns have to mirror the
restrictions on FVe(p) for and-patterns, and vice-versa. We still have to explain why we
require for a constructor pattern C(p1, . . . , pn) that all FVo(pi) have to be the empty set.
The reason for this restriction lies in the following semantic equivalence, which is motivated
by its importance for rewriting patterns into a normal form (see Section 5.1) and which we
will prove below.

! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , _) ∥ . . . ∥ C(_, . . . , ¬pn) "

The pattern on the right consists of several patterns that are joined by or-patterns. The
rules for or-patterns require that each disjunct contains the same sets FVe(−). But since
the first pattern ¬C(_, . . . , _) doesn’t contain any variables, the other disjuncts must not
contain any variables under an even number of negations. And since the subpatterns pi

occur under a negation, we can deduce that the patterns pi must not contain any variables
under an odd number of negations.

Using linearity we can now prove the missing equivalences which were not included in
Theorems 8 and 9.

! Theorem 12 (Algebraic equivalences of Patterns, II, ). For all patterns p, q and r, the
following equivalences hold if the patterns on both sides are linear (i.e. lin±).

! p & (q ∥ r) " ≡ ! (p & q) ∥ (p & r) " ! p ∥ (q & r) " ≡ ! (p ∥ q) & (p ∥ r) " Distributivity
! p & p " ≡ ! p " ! p ∥ p " ≡ ! p " Idempotence
! p & # " ≡ ! # " ! p ∥ _ " ≡ ! _ " Zeros

Theorem 8 and Theorem 12 taken together show that patterns form a boolean algebra,
with the caveat that the conjunction or disjunction of two linear patterns does not neces-
sarily result in a linear pattern. We can also prove some additional equivalences involving
constructor patterns.

! Theorem 13 (Equivalences of Constructor Patterns, II, ). For all patterns p1 to pn and p′
1

to p′
n and constructors C ̸= C′, the following equivalences hold if the patterns on both sides

are linear (i.e. lin±).

! C(p1, . . . , #, . . . , pn) " ≡ ! # "
! C(p1, . . . , pn) & C′(p′

1, . . . , p′
m) " ≡ ! # "

! C(p1, . . . , pn) & ¬C′(p′
1, . . . , p′

m) " ≡ ! C(p1, . . . , pn) "
! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , pn) ∥ . . . ∥ C(p1, . . . , ¬pn) "

The equivalences of Theorem 13 are essential for proving the correctness of the normal-
ization algorithm specified in Section 5.

Repeatedly rewrite with the following equivalence (+ boolean laws)
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which do not contain or-patterns. The syntax of the disjunctive normal forms D and ele-
mentary conjuncts K is given below. We can normalize a pattern in negation normal form
to the disjunctive normal form by the function dnf(−) which takes a pattern in negation
normal form and returns a set of elementary conjuncts. At the top-level we have to wrap
the result in a ∥ {. . .} node.

! Definition 23 (Disjunctive Normal Form).

D ::= ∥ {K1, . . . , Kn} Disjunctive Normal Form
K ::= x | ¬x | ¬Cn | Cn(K1, . . . , Kn) | K & K | _ | # Elementary Conjunct

dnf(x) := {x} dnf(¬x) := {¬x} dnf(¬Cn) := {¬Cn} dnf(_) := {_} dnf(#) := {#}
dnf(Cn(N1, . . . , Nn)) := {C(k1, . . . , kn) | k1 ∈ dnf(N1), . . . , kn ∈ dnf(Nn)}

dnf(N1 & N2) := {k1 & k2 | k1 ∈ dnf(N1), k2 ∈ dnf(N2)}
dnf(N1 ∥ N2) := dnf(N1) ∪ dnf(N2)

! Example 24. We compute the disjunctive normal form for our running example.

dnf(x&(Sa∥Su)) = ∥ {x&Sa, x&Su} dnf(x&(¬Sa)&(¬Su)) = ∥ {x&(¬Sa)&(¬Su)}

We can embed the disjunctive normal form ∥ {K1, . . . , Kn} into patterns as K1 ∥ . . .∥Kn.
This set of conjuncts is by design never empty (n > 0), however, if we do admit this case
(n = 0) it translates to the absurd-pattern # and is treated as such in any use case (see
Section 6).

5.3 Normalizing Elementary Conjuncts
As a last step, we further simplify the elementary conjuncts of Section 5.2. We write D and
K for these normalized disjunctive normal forms and normalized elementary conjuncts:

! Definition 25 (Normalized Disjunctive Normal Form).

D ::= ∥ {K1, . . . , Kn}
K ::= {x1, . . . , xn} & C(K1, . . . , Km) | {x1, . . . , xn} & ¬{C1, . . . , Cm} | {x1, . . . , xn} & #

These normalized conjuncts follow from the observation that there are essentially only
three different kinds of conjuncts: positive, negative and unsatisfiable. Each of these three
conjuncts can bind a set of variables {x1, . . . , xn}. A positive conjunct {x1, . . . , xn} &
C(K1, . . . , Km) matches against any value headed by the constructor C, and binds that value
against all the variables in the set. A negative conjunct {x1, . . . , xn}&¬{C1, . . . , Cm} matches
against any value which is headed by a constructor which is not in the list {C1, . . . , Cm}. The
negative conjunct {x} & ¬{} can be used to represent a single pattern variable x, and sim-
ilarly {} & ¬{} can be used to represent a wildcard pattern. An unsatisfiable conjunct
{x1, . . . , xn} & # never matches against a value.

Computing these normalized conjuncts consists in collecting all the variables, as well
as all negated and non-negated head constructors of an elementary conjunct. Intuitively,
the head constructors are constructors that occur in a pattern without being nested in a
subpattern of another constructor. An elementary conjunct is unsatisfiable if two different
non-negated constructors appear in the conjunct, or if a head constructor appears both

David Binder and Lean Ermantraut 19:17

5.1 Computing the Negation Normal Form
Consider the pattern ¬Pair(True, False) which matches anything except a tuple consisting
of the boolean values True and False. Another way to express the behavior of this pattern
is to say that it matches anything which isn’t a tuple, or it matches a tuple if either the left
element isn’t the value True or the right element isn’t the value False. We can therefore also
write the pattern as ¬Pair(_, _) ∥ Pair(¬True, _) ∥ Pair(_, ¬False). We can generalize
this observation and use it to push all negation-patterns inside, by repeatedly rewriting the
pattern using the last equation of Theorem 13. After we have normalized patterns in this way,
negation-patterns only occur applied to variables or to constructors where all subpatterns
of the constructor are wildcard patterns. We abbreviate these negated constructor patterns
¬Cn(_, . . . , _) as ¬Cn.

! Definition 20 (Negation Normal Forms). The syntax of negation normal forms is:

N ::= x | ¬x | ¬Cn | Cn(N1, . . . , Nn) | N & N | N ∥ N | _ | #

nnf−(p1 & p2) := nnf−(p1) ∥ nnf−(p2) nnf+(p1 & p2) := nnf+(p1) & nnf+(p2)
nnf−(p1 ∥ p2) := nnf−(p1) & nnf−(p2) nnf+(p1 ∥ p2) := nnf+(p1) ∥ nnf+(p2)

nnf−(¬p) := nnf+(p) nnf+(¬p) := nnf−(p)
nnf−(#) := _ nnf+(#) := #
nnf−(_) := # nnf+(_) := _
nnf−(x) := ¬x nnf+(x) := x

nnf−(Cn(p1, . . . , pn)) := ¬Cn ∥ Cn(nnf−(p1), . . . , _) ∥ . . . ∥ Cn(_, . . . , nnf−(pn))
nnf+(Cn(p1, . . . , pn)) := Cn(nnf+(p1), . . . , nnf+(pn))

The normalization procedure nnf(−) is split into the two functions nnf−(−) and nnf+(−)
which track if we are currently normalizing a negated or a non-negated pattern. At the top-
level, the function nnf(−) therefore just invokes nnf+(−).

! Example 21. We compute the negation normal form of our running example.

nnf+(x & (Sa ∥ Su)) = x & (Sa ∥ Su) nnf+(x & ¬(Sa ∥ Su)) = x & (¬Sa) & (¬Su)

We treat the negation normal forms N as a subset of patterns p, and hence all functions
and properties of patterns can also be applied to normal forms. If we translate a pattern
into negation normal form then the pattern is still wellformed, can be typed using the same
context and type, and has the same semantics as before. This is witnessed by the following
lemma.

! Lemma 22 (Negation Normalization Preserves Linearity, Typing and Semantics). For all
patterns p, contexts Γ, ∆ and types τ , we have:
1. Linearity is preserved: If p lin+, then nnf(p) lin+.
2. Typing is preserved: If Γ; ∆ ⇒ p : τ , then Γ; ∆ ⇒ nnf(p) : τ .
3. The patterns are semantically equivalent: If p lin±, then ! p " ≡ ! nnf(p) ".

Proof. Available in the appendix of the extended version of this paper [2]. "

5.2 Computing the Disjunctive Normal Form
The next step is to bring the negation normal form into a disjunctive normal form. Patterns
in disjunctive normal form consist of an outer disjunction of so-called “elementary conjuncts”
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! Definition 5 (Semantic equivalence of substitutions, ). Two substitutions σ and σ′ are
semantically equivalent if they contain the same mappings:

! σ " ≡ ! σ′ " := ∀m, m ∈ σ ⇔ m ∈ σ′

We can now state the definition for semantic equivalence of patterns.
! Definition 6 (Semantic equivalence of patterns, ). Two patterns p and q are semantically
equivalent if they match the same values with equivalent substitutions, and if they also do
not match the same values with equivalent substitutions:

! p " ≡ ! q " := ∀v, ∀σ, p ◃ v " σ ⇒ ∃σ′, q ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ◃ v " σ ⇒ ∃σ′, p ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ p ̸ ◃v " σ ⇒ ∃σ′, q ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ̸ ◃v " σ ⇒ ∃σ′, p ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "

We have to include both judgment forms if we want semantic equivalence to be a con-
gruence relation. To see why this is the case, suppose that we omit the second half of
Definition 6. It would then follow that the two patterns # and ¬x are semantically equival-
ent since they match against the same set of values (i.e. no values at all). But if we apply a
negation-pattern to both patterns, then we can easily show that the resulting patterns are
no longer semantically equivalent: ! ¬# " ≡ ! _ " ̸≡ ! x " ≡ ! ¬¬x ". But since Definition 6 re-
quires both patterns to agree on the values they match and don’t match against, it actually
defines a congruence relation on patterns:
! Theorem 7 (Congruence, ). If ! p1 " ≡ ! p′

1 " to ! pn " ≡ ! p′
n " hold, then we also have

! ¬p1 " ≡ ! ¬p′
1 ", ! p1 & p2 " ≡ ! p′

1 & p′
2 ", ! p1 ∥ p2 " ≡ ! p′

1 ∥ p′
2 " and ! C(p1, . . . , pn) " ≡

! C(p′
1, . . . , p′

n) ".
We can use the definition of semantic equivalence to prove that the following algebraic

laws hold for patterns:
! Theorem 8 (Algebraic Equivalences of Patterns, I, ). For all patterns p, q, r, the following
equivalences hold:

! p & q " ≡ ! q & p " ! p ∥ q " ≡ ! q ∥ p " Commutativity
! p & (q & r) " ≡ ! (p & q) & r " ! p ∥ (q ∥ r) " ≡ ! (p ∥ q) ∥ r " Associativity

! p & _ " ≡ ! p " ! p ∥ # " ≡ ! p " Neutral Elements
! ¬_ " ≡ ! # " ! ¬# " ≡ ! _ " Duality

! ¬(p ∥ q) " ≡ ! (¬p) & (¬q) " ! ¬(p & q) " ≡ ! (¬p) ∥ (¬q) " De Morgan
! ¬¬p " ≡ ! p " Double Negation

In addition to these boolean laws we can also prove the following equivalences which
involve constructor patterns:
! Theorem 9 (Equivalences of Constructor Patterns, I, ). For all patterns p1 to pn and p′

1
to p′

n, the following equivalences hold:

! C(p1, . . . , pn) & C(p′
1, . . . , p′

n) " ≡ ! C(p1 & p′
1, . . . , pn & p′

n) "
! C(p1, . . . , pi ∥ p′

i, . . . , pn) " ≡ ! C(p1, . . . , pi, . . . , pn) ∥ C(p1, . . . , p′
i, . . . , pn) "

There are still some equivalences that we expect to hold but which are missing from
Theorem 8 and Theorem 9. These additional laws, like the distributive law for and- and
or-patterns, are not universally valid and require additional restrictions on patterns. We
will motivate and introduce these additional constraints in the next subsection.

Repeatedly rewrite with the following equivalence (+ boolean laws)
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which do not contain or-patterns. The syntax of the disjunctive normal forms D and ele-
mentary conjuncts K is given below. We can normalize a pattern in negation normal form
to the disjunctive normal form by the function dnf(−) which takes a pattern in negation
normal form and returns a set of elementary conjuncts. At the top-level we have to wrap
the result in a ∥ {. . .} node.

! Definition 23 (Disjunctive Normal Form).

D ::= ∥ {K1, . . . , Kn} Disjunctive Normal Form
K ::= x | ¬x | ¬Cn | Cn(K1, . . . , Kn) | K & K | _ | # Elementary Conjunct

dnf(x) := {x} dnf(¬x) := {¬x} dnf(¬Cn) := {¬Cn} dnf(_) := {_} dnf(#) := {#}
dnf(Cn(N1, . . . , Nn)) := {C(k1, . . . , kn) | k1 ∈ dnf(N1), . . . , kn ∈ dnf(Nn)}

dnf(N1 & N2) := {k1 & k2 | k1 ∈ dnf(N1), k2 ∈ dnf(N2)}
dnf(N1 ∥ N2) := dnf(N1) ∪ dnf(N2)

! Example 24. We compute the disjunctive normal form for our running example.

dnf(x&(Sa∥Su)) = ∥ {x&Sa, x&Su} dnf(x&(¬Sa)&(¬Su)) = ∥ {x&(¬Sa)&(¬Su)}

We can embed the disjunctive normal form ∥ {K1, . . . , Kn} into patterns as K1 ∥ . . .∥Kn.
This set of conjuncts is by design never empty (n > 0), however, if we do admit this case
(n = 0) it translates to the absurd-pattern # and is treated as such in any use case (see
Section 6).

5.3 Normalizing Elementary Conjuncts
As a last step, we further simplify the elementary conjuncts of Section 5.2. We write D and
K for these normalized disjunctive normal forms and normalized elementary conjuncts:

! Definition 25 (Normalized Disjunctive Normal Form).

D ::= ∥ {K1, . . . , Kn}
K ::= {x1, . . . , xn} & C(K1, . . . , Km) | {x1, . . . , xn} & ¬{C1, . . . , Cm} | {x1, . . . , xn} & #

These normalized conjuncts follow from the observation that there are essentially only
three different kinds of conjuncts: positive, negative and unsatisfiable. Each of these three
conjuncts can bind a set of variables {x1, . . . , xn}. A positive conjunct {x1, . . . , xn} &
C(K1, . . . , Km) matches against any value headed by the constructor C, and binds that value
against all the variables in the set. A negative conjunct {x1, . . . , xn}&¬{C1, . . . , Cm} matches
against any value which is headed by a constructor which is not in the list {C1, . . . , Cm}. The
negative conjunct {x} & ¬{} can be used to represent a single pattern variable x, and sim-
ilarly {} & ¬{} can be used to represent a wildcard pattern. An unsatisfiable conjunct
{x1, . . . , xn} & # never matches against a value.

Computing these normalized conjuncts consists in collecting all the variables, as well
as all negated and non-negated head constructors of an elementary conjunct. Intuitively,
the head constructors are constructors that occur in a pattern without being nested in a
subpattern of another constructor. An elementary conjunct is unsatisfiable if two different
non-negated constructors appear in the conjunct, or if a head constructor appears both
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! Definition 5 (Semantic equivalence of substitutions, ). Two substitutions σ and σ′ are
semantically equivalent if they contain the same mappings:

! σ " ≡ ! σ′ " := ∀m, m ∈ σ ⇔ m ∈ σ′

We can now state the definition for semantic equivalence of patterns.
! Definition 6 (Semantic equivalence of patterns, ). Two patterns p and q are semantically
equivalent if they match the same values with equivalent substitutions, and if they also do
not match the same values with equivalent substitutions:

! p " ≡ ! q " := ∀v, ∀σ, p ◃ v " σ ⇒ ∃σ′, q ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ◃ v " σ ⇒ ∃σ′, p ◃ v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ p ̸ ◃v " σ ⇒ ∃σ′, q ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "
∧ q ̸ ◃v " σ ⇒ ∃σ′, p ̸ ◃v " σ′ ∧ ! σ " ≡ ! σ′ "

We have to include both judgment forms if we want semantic equivalence to be a con-
gruence relation. To see why this is the case, suppose that we omit the second half of
Definition 6. It would then follow that the two patterns # and ¬x are semantically equival-
ent since they match against the same set of values (i.e. no values at all). But if we apply a
negation-pattern to both patterns, then we can easily show that the resulting patterns are
no longer semantically equivalent: ! ¬# " ≡ ! _ " ̸≡ ! x " ≡ ! ¬¬x ". But since Definition 6 re-
quires both patterns to agree on the values they match and don’t match against, it actually
defines a congruence relation on patterns:
! Theorem 7 (Congruence, ). If ! p1 " ≡ ! p′

1 " to ! pn " ≡ ! p′
n " hold, then we also have

! ¬p1 " ≡ ! ¬p′
1 ", ! p1 & p2 " ≡ ! p′

1 & p′
2 ", ! p1 ∥ p2 " ≡ ! p′

1 ∥ p′
2 " and ! C(p1, . . . , pn) " ≡

! C(p′
1, . . . , p′

n) ".
We can use the definition of semantic equivalence to prove that the following algebraic

laws hold for patterns:
! Theorem 8 (Algebraic Equivalences of Patterns, I, ). For all patterns p, q, r, the following
equivalences hold:

! p & q " ≡ ! q & p " ! p ∥ q " ≡ ! q ∥ p " Commutativity
! p & (q & r) " ≡ ! (p & q) & r " ! p ∥ (q ∥ r) " ≡ ! (p ∥ q) ∥ r " Associativity

! p & _ " ≡ ! p " ! p ∥ # " ≡ ! p " Neutral Elements
! ¬_ " ≡ ! # " ! ¬# " ≡ ! _ " Duality

! ¬(p ∥ q) " ≡ ! (¬p) & (¬q) " ! ¬(p & q) " ≡ ! (¬p) ∥ (¬q) " De Morgan
! ¬¬p " ≡ ! p " Double Negation

In addition to these boolean laws we can also prove the following equivalences which
involve constructor patterns:
! Theorem 9 (Equivalences of Constructor Patterns, I, ). For all patterns p1 to pn and p′

1
to p′

n, the following equivalences hold:

! C(p1, . . . , pn) & C(p′
1, . . . , p′

n) " ≡ ! C(p1 & p′
1, . . . , pn & p′

n) "
! C(p1, . . . , pi ∥ p′

i, . . . , pn) " ≡ ! C(p1, . . . , pi, . . . , pn) ∥ C(p1, . . . , p′
i, . . . , pn) "

There are still some equivalences that we expect to hold but which are missing from
Theorem 8 and Theorem 9. These additional laws, like the distributive law for and- and
or-patterns, are not universally valid and require additional restrictions on patterns. We
will motivate and introduce these additional constraints in the next subsection.
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variables appear in the substitution. In the and-pattern p1 & p2 we require that FVe(p1) is
disjoint from FVe(p2) since we do not want the same variable to be mapped to two values in
the substitution. The reasoning is very similar for constructor patterns C(p1, . . . , pi) where
we require all the FVe(pi) to be disjoint.

Next, let us look at the restrictions on FVo(e), i.e. the variables which occur under
an odd number of negations. The rules for and-patterns and or-patterns are motivated by
duality. We have seen that the De Morgan rules are valid for patterns. We therefore want,
for example, that if the pattern ¬(p1 ∥ p2) is linear, the pattern ¬p1 & ¬p2 should be linear
as well. For this to be true, the restrictions on FVo(p) for or-patterns have to mirror the
restrictions on FVe(p) for and-patterns, and vice-versa. We still have to explain why we
require for a constructor pattern C(p1, . . . , pn) that all FVo(pi) have to be the empty set.
The reason for this restriction lies in the following semantic equivalence, which is motivated
by its importance for rewriting patterns into a normal form (see Section 5.1) and which we
will prove below.

! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , _) ∥ . . . ∥ C(_, . . . , ¬pn) "

The pattern on the right consists of several patterns that are joined by or-patterns. The
rules for or-patterns require that each disjunct contains the same sets FVe(−). But since
the first pattern ¬C(_, . . . , _) doesn’t contain any variables, the other disjuncts must not
contain any variables under an even number of negations. And since the subpatterns pi

occur under a negation, we can deduce that the patterns pi must not contain any variables
under an odd number of negations.

Using linearity we can now prove the missing equivalences which were not included in
Theorems 8 and 9.

! Theorem 12 (Algebraic equivalences of Patterns, II, ). For all patterns p, q and r, the
following equivalences hold if the patterns on both sides are linear (i.e. lin±).

! p & (q ∥ r) " ≡ ! (p & q) ∥ (p & r) " ! p ∥ (q & r) " ≡ ! (p ∥ q) & (p ∥ r) " Distributivity
! p & p " ≡ ! p " ! p ∥ p " ≡ ! p " Idempotence
! p & # " ≡ ! # " ! p ∥ _ " ≡ ! _ " Zeros

Theorem 8 and Theorem 12 taken together show that patterns form a boolean algebra,
with the caveat that the conjunction or disjunction of two linear patterns does not neces-
sarily result in a linear pattern. We can also prove some additional equivalences involving
constructor patterns.

! Theorem 13 (Equivalences of Constructor Patterns, II, ). For all patterns p1 to pn and p′
1

to p′
n and constructors C ̸= C′, the following equivalences hold if the patterns on both sides

are linear (i.e. lin±).

! C(p1, . . . , #, . . . , pn) " ≡ ! # "
! C(p1, . . . , pn) & C′(p′

1, . . . , p′
m) " ≡ ! # "

! C(p1, . . . , pn) & ¬C′(p′
1, . . . , p′

m) " ≡ ! C(p1, . . . , pn) "
! ¬C(p1, . . . , pn) " ≡ ! ¬C(_, . . . , _) ∥ C(¬p1, . . . , pn) ∥ . . . ∥ C(p1, . . . , ¬pn) "

The equivalences of Theorem 13 are essential for proving the correctness of the normal-
ization algorithm specified in Section 5.

Repeatedly rewrite with the following equivalences (+ boolean laws)

Positive Information Negative Information Absurd
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and a matrix of clauses with patterns in nDNF (see Section 5.3).

case v1, . . . , vn of

⎡

⎢⎢⎢⎢⎣

D
1
1 . . . D

1
n ⇒ e1

...
D

m
1 . . . D

m
n ⇒ em

default ⇒ ed

⎤

⎥⎥⎥⎥⎦
(Input)

In such multi-column case expressions, the i-th pattern column tests the i-th scrutinee vi.
The main idea of the algorithm is that we take such a multi-column case expression as
input and examine all scrutinees – and subscrutinees – one by one, producing a nesting
of single-column case expressions with simple patterns as output. These simple patterns
consist only of constructors applied to variables. We start the compilation by embedding an
ordinary case expression into this generalized form on which we call the function compile.
This function can take one of three steps. It either terminates with a Default or Simple
step, or it examines one of the scrutinees in a Branch step.

Default If default ⇒ ed is the only clause then we terminate with the expression ed.
Simple If the first row consists only of variable patterns of the form {x1, . . . xk} & ¬{} then

compilation terminates with the right-hand side of that clause together with appropriate
substitutions. This rule also applies if n = 0.

Branch If neither of the above steps apply we pick a column i (with 1 ≤ i ≤ n) and examine
its scrutinee vi in a single-column case against simple constructor patterns.

All the complexity of the algorithm lies within the Branch step, so we will discuss its
details in the next subsection.

6.2 The Branching Step
The first step is to choose on which index i we want to perform the case split. This choice
does not affect the correctness of the algorithm; selecting a column is a therefore a matter
of optimization which other authors [27, 24] have discussed in detail. We only enforce that
the selected pattern column must contain outermost constructors. Such a column must
necessarily exist if neither the Default nor the Simple step apply.

Next, we have to gather the constructors against which we can test the scrutinee vi. We
collect these so-called head constructors into a set H(Di) defined below.

H(Di) :=
⋃

j=1,...,m

head(Dj
i ) with

head(∥ {K1, . . . , Kt}) :=
⋃

l=1,...,t
head(Kl)

head({x1, . . . , xs} & C(K1, . . . , Kt)) := {C}
head({x1, . . . , xs} & ¬{C1, . . . , Ct}) := {C1, . . . , Ct}
head({x1, . . . , xs} & #) := ∅

Once we have found these head constructors {Cn1 , . . . , Cnz } we generate fresh pattern
variables xk

1 to xk
nk

for each constructor Cnk and a simple pattern match. For each clause we
have gained information about the scrutinee vi: Within the right-hand side of a constructor
clause, we know that our scrutinee must have conformed to the shape of our constructor.
Likewise, if we arrive at the right-hand side of the default clause, we know that our scrutinee
must have been different to all the constructors {Cn1 , . . . , Cnz } before. We use this knowledge
by computing clause-specific subproblems of our initial Input and we do so via the function
S for constructor clauses and function D for the default clause.

Modification of algorithm described by Maranget compiles to decision trees.

More infos about these default clauses in paper :)
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Summary

• Provide a language of patterns that makes it easy to express complements 

• Complements make it practical to enforce order-independence


• Many valid laws make it easy to reason about patterns (Verified in Rocq)


• Not too expressive: Interesting properties of patterns are decidable 

• Can be compiled to efficient code via decision trees
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