The Algebra of Patterns

David Binder, University of Kent and Lean Ermantraut, Radboud University Nijmegen

Color Red Green Blue

1sRed Color Bool

1sRed Red = True
isRed _ = False

The semantics of the pattern match depends on the order of clauses

Color Red Green Blue

1sRed Color Bool

1sRed _ False
1sRed Red True

The meaning of each individval clause depends on its position

Color Red Green Blue

1sRed Color Bool

1sRed Red True
1sRed Green False
1sRed Blue False

Making clauses non-overlapping by expanding all constructors is impractical

Make Order-Independent
Pattern Matching Practical

Why Order-Independence Matters

Why Order-Independence Matters

Equational Reasoning!

id(z) =
map(f, H = |
map(f,z :: xs) = f(x) :: map(f,xs)

N TN N
w NN =
N N NS

map(id, |]) =(2) [
map(id, x :: xs) =(3) id(x) :: map(id, xs) =(1) = :: map(id, xs) = p) @ :: TS

Equations for equational reasoning come from pattern matching clauses

Why Order-Independence Matters

Equational Reasoning!

isRed(Red) := True
isRed(_) := False

True =(4) isRed(Red) =(5) False

What judgemental equalities are available for automatic rewriting?

Why Order-Independence Matters

Reasoning about Change over Time

o Software engineering is programming integrated over time.
 PL design should be judged for how it accommodates change over time

 How does the meaning of a program change when you add clauses to a
pattern match, or constructors to a data type.

More details in the paper!

"Participants felt similarly about the use of wildcards in pattern
matching, which silently assign pre-existing behavior to new
variants of an enumeration. P7 mentioned that, in their main
codebase, wildcards are completely disallowed for this reason,
even though they make programming more convenient.

Justin Lubin and Sarah E. Chasins: How statically-typed functional programmers write code.

10

A Boolean Algebra of Patterns

A Boolean Algebra of Patterns

The cast of patterns

» \ariable patterns: X
 Constructor patterns: C(p1,...,pn)
* Wildcard patterns:

 Absurd patterns: #

» And patterns: D &P <«— (eneralize x @ p Pattferns

e Or patterns: pllp

» Negation patterns: P <— Allow to express complement without

mentioning all constructors

12

The Semantics of Pattern Matching, |

When does a pattern match a valve?

Pattern matches: p>ov ~» o

V ~s O
VAR WILD pF NEG

TV~ [T v RS pHU o !

p1[>’UWO- p2|>’UWO' p1[>”U’V‘%O'1 p2[>’U'v‘—>O'2

OR1 ORas AND
p1||[p2>v~s o p1||p2>v~so pP1 & Pa >V~ 01 +H 09
P1 B> U~ 0O1q Pn DUy ~ Oy
CTOR

C™"(p1y... pn)>C™"(v1,...,0,) ~ 01 H ... +H op

13

The Semantics of Pattern Matching, |l

When does a pattern NOT match a valve?

Pattern doesn’t match: p v ~~ o

Ei:pi)éviwa

ABSURD CTOR
pv] C™(p1s- .. pn) FC(V1,...,05) ~ O 1
p[>/U’V“>O- C’n #C/m
NEG» CTOR
—p BV~ O C(p1,. .. pn) BC™ (01, .. Om) ~] :
p1 PU ~ O P2 PU ~> O p1 U~ 01 P2 PU ~ 02

AND» OR

AND
! p1 || p2 pv ~ 01 +H 09

p1 &p2 pU~ O p1 & po PV~ O

14

Equivalence of Patterns

lpll=1lqll :=VYv, Vo, ppv~ o= O'/,QDUWO'//\IIO'

Aqgov~ o= do',prv~ad Ao

Ap pv~ o= do',q pv~ 0o A

Aq Pv~ o= o', p pv~c A

lo]

lo]

/
o
/
O
T
O
T/
O

Two patterns are equivalent if they match against the same values
with equivalent substitutions, and dont match against the same values

with equivalent substitutions.

15

Reasoning about Patterns, |

» Theorem 8 (Algebraic Equivalences of Patterns, |, ®). For all patterns p, q,r, the following
equivalences hold:

[p&q] = [q&p] lplla]l = lallp] Commutativity
[p&(q&r)] = [w&g&r] [plleln] = L@elallrl] Associativity
Ip& | = [p] Ipll#] = [pl] Neutral Elements
[— 1 = [+#] [-#] = [_] Duality
[-(ellg] = [(p)&(=q)] [~p&qg] = [(=p) (=] De Morgan
|-l =|prl Double Negation

Requires semantics to be non-deterministic!

16

Reasoning about Patterns, I

» Theorem 9 (Equivalences of Constructor Patterns, |, ®). For all patterns p1 to p, and p;
to p., the following equivalences hold:

ﬂc(pla .. 7pn) &C(pllv c e ?pf/n,) — C(pl &pllv .-y Pn &pf/n,)]]
I[C(plv Y % || pg,a 20 7pn) | C(plv ooy Piy .- 7pn) || C(p17 oo e 7p;7 0 7p’n,)]]

Essential for correctness of compilation algorithwm.

17

Reasoning About Patterns, Il

» Theorem 12 (Algebraic equivalences of Patterns, I, ®). For all patterns p,q and r, the

following equivalences hold if the patterns on both sides are linear (i.e. lin-

[p& (g 7)]
[p&p]
[p& #]

T

[(p&q)||[(p&r)] [pl(¢&r)]
[p] [pllp]

[#] [Pl]

). «—Details in the paper

[(p|lqg) & (p]||r)] Distributivity
[p]

||

Idempotence
/,€108S

Patterns on both sides might have different sets of free variables.

18

Reasoning about Patterns, IV

» Theorem 13 (Equivalences of Constructor Patterns, Il, ®). For all patterns p1 to p, and p
to p!. and constructors C # C', the following equivalences hold if the patterns on both sides

are linear (i.e. lin™).

[C(p1s-- s #s o) | = [#]

[C(p1y- - pn) &C(PYs - 00) | = [#]
[C(p1,. .- on) &=C' (P, ... 0)] = [C(P1, ..)]
[=C(p1,--spn) [=[C s) [C(op1sespn) |- ([C(p1, -+, —pn) |

Example: ~lnl(True) = =lnl(_) Il Inl(-True)
Open World Assumption: Other constructors of the data type are irrelevant

-lnl(_) can be compiled to simple check of constructor tag

19

Compilation of Algebraic Patterns

Negation Normal Form

Repeatedly rewrite with the following equivalence (* hoolean laws)

|[_'C(p1, I 7pn)]] — |[_'C(—7 Ce 7—) H C(_'pla O apn) H re H C(pl, X -a_'pn)]]

Disjunctive Normal Form

N == z|-x|-C"|C*"(Ni,....,.Np) | N&N|N|N|_|#
D = ||{Ky,..., Ky} Disjunctive Normal Form
K == z|-x|-C"| C"(Ky,....,.K,) | K&K |_ | # Elementary Conjunct

Repeatedly rewrite with the following equivalence (* hoolean laws)

Ilc(p]-?"’?pi pr/i)”')pn)]] — ﬂ:c(pl?"’?pi?"’?pn) “C(p]-?"'?p;;?"'?pn)]]

22

Normalized Disjunctive Normal Form

D = | {Ky,...,K,} Disjunctive Normal Form

K = z|-a|-C"|C"(Ky,....,.K,) | K&K |__ | # Elementary Conjunct

é = || {Kq,..., Knp N

K = {{x,...,2,} &C(K1,....K,) [{z1,..., 2.} & {C1,....Cn} | {x1,...,2,} & #

Positive Information Negative Information Absurd

Repeatedly rewrite with the following equivalences (* boolean laws)
[C(p1s--s0n) &C(PY, -5 p) | = [Clp1 &Py o0 & py,)
ﬂC(pl,...,pn)&C’(p’l,...,p,’m): #ﬂ

[C(P1s---pn) & =C (P D) | = [Clp1, - p0)]

23

Compiled to Decision Trees

Modification of algorithm described by Maranget compiles to decision trees.

[[—1 —1

D, ... D, =¢

case vq,..., 0, of . - .
D, . D, =e

default = €4

T

More infos about these default clauses in paper :)

24

Summary

Summary

* Provide a language of patterns that makes it easy to express complements
« Complements make it practical to enforce order-independence

 Many valid laws make it easy to reason about patterns (Verified in Rocq)

* Not too expressive: Interesting properties of patterns are decidable

 Can be compiled to efficient code via decision trees

26

